
Mixture Modeling 1 

Running Head: Mixture Modeling 

Chapter 21  

Mixture Modeling for Organizational Behavior Research 

Order of Authorship and Contact Information 

Alexandre J. S. Morin* 

Substantive-Methodological Synergy Research Laboratory 

Department of Psychology, Concordia University 

7141 Sherbrooke W,  

Montreal, QC, Canada, H4B 1R6 

Phone: (+1) 514-848-2424 ext. 3533 

Email: alexandre.morin@concordia.ca 

https://smslabstats.weebly.com/ 

 

Matthew J. W. McLarnon* 

Department of Psychology 

Oakland University 

654 Pioneer Drive 

Rochester, Michigan  44309 

Phone: (+1) 248-370-2343 

Email: mclarnon@oakland.edu  

 

David Litalien 

Département des fondements et pratiques en éducation 

Faculté des sciences de l'éducation, Université Laval 

2320, rue des Bibliothèques, Office 938 

Québec, QC, Canada, G1V 0A6  

Phone: (+1) 418-656-3131 ext. 408699 

Email: david.litalien@fse.ulaval.ca  

 

* The first two authors (AJSM & MJWM) contributed equally to this chapter and both should 

be considered first authors.  

 

Acknowledgements 

The first and third authors were supported by a grant from the Social Science and Humanities 

Research Council of Canada (435-2018-0368). 

 

This is a draft chapter / article. The final version is will be available in the Handbook on the 

Dynamics of Organizational Behavior edited by Y. Griep & S.D. Hansenpublished in 2020, Edward 

Elgar Publishing Ltd 

The material cannot be used for any other purpose without further permission of the publisher, and is 

for private use only. 

Morin, A.J.S., McLarnon, M.J.W., & Litalien, D. (2020). Mixture modeling for organizational 

behavior research. In Y. Griep & S.D. Hansen (Eds.), Handbook on the Temporal Dynamics of 

Organizational Behavior (pp. 351-379). Cheltenham, UK: Edward Elgar. 

mailto:alexandre.morin@concordia.ca
https://smslabstats.weebly.com/
mailto:mclarnon@oakland.edu
mailto:david.litalien@fse.ulaval.ca


Mixture Modeling 2 

Abstract 

This chapter introduces mixture modeling, with a specific focus on the analytical possibilities 

provided by this methodological framework for cross-sectional and longitudinal organizational 

behavior research. We first introduce basic principles of mixture modeling, which are also 

broadly labeled person-centered approaches, before presenting, in a pedagogical manner, 

various types of mixture models that are available to researchers. These models include latent 

profile analyses, multi-group latent profile analyses, mixture regression analyses, and the 

longitudinal models of profile similarity, latent transition analyses, and growth mixture 

analyses. For each model, a non-technical description and recommendations for its 

implementation are provided, followed by brief illustrations of the model as it has been applied 

in previous studies. To enable readers to carry out the advanced models demonstrated here in 

an informed manner, we also provide an extensive set of online supplements that focuses on 

the estimation of these models in the Mplus statistical package. 

 

 

Keywords: mixture modeling, person-centered analyses, latent profile analyses, mixture 

regression, latent transition analysis, longitudinal profile similarity, growth mixture model 
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Introduction 

Describing, explaining, and predicting employee and work team behaviors, and 

understanding how and why they may change and exhibit dynamicity over time are central 

questions for organizational behavior researchers. However, the sheer complexity of human 

behavior is drastically increased when an individual or team is considered as a holistic 

constellation of attributes, characteristics, and traits. This complexity is further increased by 

numerous calls for greater consideration of time in organizational behavior studies and for 

research that is longitudinal and temporally sensitive (e.g., Mathieu, Maynard, Rapp, & Gilson, 

2008; Vantilborgh, Hofmans, & Judge, 2018). Together, modern organizational behavior 

research calls for complex cutting-edge analytical procedures that match the complexity of real-

world phenomena. Fortunately, fast-paced methodological advancements, coupled with 

increasing levels of computer power and user-friendly statistical packages, make it possible for 

most organizational scholars to harness these methodological developments. 

Marsh and Hau (2007) coined the term “substantive-methodological synergies” to 

describe collaborative efforts in which advanced statistical methods are applied to address 

substantively and theoretically important research questions. Central to the creation of such 

substantive-methodological synergies is the availability of non-technical, user-friendly 

descriptions on advanced methods. With this notion as a general guide, we present a broad 

introduction to the application of mixture models geared toward organizational behavior 

scholars. Aligned with recent calls for longitudinal studies in organizational research (e.g., 

Cronin, Weingart, & Todorova, 2011; Mathieu, Hollenbeck, van Knippenberg, & Ilgen, 2017; 

Roe, Gockel, & Meyer, 2012), we pay special attention to longitudinal variants of mixture 

models, which can help researchers to capture interindividual differences in intraindividual 

change processes (Ram & Grimm, 2007).  

Mixture models are a recent addition to organizational scholars’ methodological 

toolbox. Mixture models need not be applied to every dataset, but rather reflect one of the 

numerous statistical approaches that may help researchers understand organizational 

phenomena and track changes and trends among individuals, teams, and organizations. In 

tracing the first 100 years of the Journal of Applied Psychology, Cortina, Aguinis, and DeShon 

(2017) described the organizational behavior domain as being at the forefront of statistical 

sophistication. This emphasis on methodological rigor, which we aim to maintain in this 

chapter, had its beginnings with statistical models involving multiple regression (see Thorndike, 

1918; Thurstone, 1919; Hull, 1922, 1923). Speaking more broadly, multiple regression 

represents a generalizable framework that can assess linear or polynomial relations between a 

set of continuous or categorical predictor variables, their interactions, and a continuous outcome 

(Cohen, 1968). Following multiple regression, canonical correlation analysis, a special case of 

multiple regression with multiple outcome variables, was established (Knapp, 1978). Latent 

variable models, consisting of the common methods of confirmatory factor analysis (CFA; 

Jöreskog, 1969) and structural equation models (SEMs; Jöreskog, 1970), however, rapidly 

superseded canonical correlation analyses. Latent variable models offer a broader analytical 

framework through which a series of parallel or sequential relations could be estimated between 

continuous latent variables (i.e., factors) that are corrected for measurement error (Bagozzi, 

Fornell, & Larcker, 1981; Bollen, 1989). Subsequently, the generalized structural equation 

modeling framework (i.e., GSEM; Muthén, 2002; Skrondal & Rabe-Hesketh, 2004) emerged 

to incorporate the analytical framework offered by CFA/SEM with the mixture models focal to 

this chapter.  

Mixture modeling is a model-based approach to classifying units of analysis 

(individuals, teams, organizations) based on the assumption that an observed sample of data 

includes a mixture of subpopulations characterized by distinct distributions or configurations 

of scores. In other words, the observed distribution of scores represents a ‘mix’ of parameters 
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(i.e., means, variances, etc.) emerging from discrete subpopulations. In contrast to CFA/SEM, 

which uses continuous latent variables, mixture models infer the presence of a categorical latent 

variable, of which the different categories refer to different subpopulations. Although mixture 

models were available as of the late 1950s (Gibson, 1959; Lazarsfeld & Henry, 1968), their 

integration within GSEM and the creation of user-friendly statistical packages (e.g., Latent 

GOLD, Vermunt & Magidson, 2016; Mplus, Muthén & Muthén, 2017) have greatly contributed 

to recent increases in the popularity of these models. GSEM facilitates estimation of complex 

theoretical models that specify relations between any type of continuous and categorical 

observed and latent variables. 

Variable-Centered versus Person-Centered Analyses 

CFA/SEM models are variable-centered. They assume population homogeneity (i.e., 

that all individuals are drawn from a single population) and that relations among variables can 

be synthesized by a single numerical result (i.e., mean, variance, regression coefficient, factor 

loading) that equally applies to all members of the sample. GSEM and mixture models, in 

contrast, are person-centered. They relax the assumption of population homogeneity, allowing 

all, or any part, of a CFA/SEM solution to vary across unobserved subpopulations of cases. As 

noted by Woo, Jebb, Tay, and Parrigon (2018), although the person- versus variable-centered 

distinction is often equated to the difference between idiographic versus nomothetic 

approaches, mixture models combine aspects of both approaches. Nomothetic approaches seek 

to discover generalizable interindividual principles that apply to every member of the sample 

under study. Idiographic approaches, also referred to as person-specific (Howard & Hoffman, 

2018), seek to discover the unicity of each individual with a focus on intraindividual processes. 

In contrast, modern mixture modeling techniques provide a way to build a bridge between these 

two approaches by focusing on the identification of subpopulations of cases to which different 

principles apply (Howard & Hoffman, 2018). 

These unobserved populations are referred to as latent profiles (when defined from 

continuous indicators) or latent classes (when defined from categorical indicators). The terms 

latent profiles or latent classes are often used interchangeably, and GSEM can incorporate both 

continuous and categorical indicators into the same model (Muthén & Muthén, 2017). More 

precisely, GSEM makes it possible to identify latent profiles reflecting relatively homogenous 

subpopulations of cases that differ qualitatively and quantitatively (Morin & Marsh, 2015) in 

relation to: (a) their configuration (i.e., means) on a set of observed and/or latent variable(s), 

and/or (b) relations between observed and/or latent predictor or outcome variables (Borsboom, 

Mellenbergh, & Van Heerden, 2003). Importantly, the person-centered approach affords the 

opportunity to consider the combined effects of focal variables in a way that would be difficult 

to address using traditional variable-centered interaction analyses (e.g., Marsh, Hau, Wen, 

Nagengast, & Morin, 2013; Morin, Morizot, Boudrias, & Madore, 2011). Indeed, whereas 

variable-centered tests of interactions are able to assess how the effects of one variable changes 

as a function of other variables, interaction results become very hard to interpret when more 

than three interacting predictors are considered. In a person-centered model, multiple predictors 

can easily be combined so as to assess the relations between combinations of these predictors 

and external variables (i.e., outcomes).  

The fundamental difference between person- and variable-centered approaches is thus 

related to the unit of analysis. Person-centered approaches focus on individual cases (i.e., 

employees, teams, etc.), whereas variable-centered approaches focus more explicitly on 

variables, or constructs. In this way, person-centered approaches can adopt a more holistic view 

of each case under study than variable-centered approaches. This difference requires a 

paradigmatic shift in the way scholars develop research questions, moving away from a 

correlational variable-centered view toward a configurational approach focused on the discrete 

subpopulations that may exist (Delbridge & Fiss, 2013; Zyphur, 2009).  
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It is important to acknowledge that mixture modeling and GSEM are not the only way 

to apply person-centered analyses. Particularly noteworthy are the ever-evolving cluster 

analytic procedures (Brusco, Steinley, Cradit, & Singh, 2011; Hofmans, Vantilborgh, & 

Solinger, 2018). However, mixture modeling, being model-based and anchored within the 

GSEM framework, currently affords a more flexible way to integrate a latent profile in a more 

complex model containing predictors, outcomes, longitudinal dependencies, and more complex 

chains of relations (Asparouhov & Muthén, 2014; McLarnon & O’Neill, 2018; Petras & Masyn, 

2010).  

Person-Centered Analyses: Three Defining Characteristics 

In GSEM, person-centered mixture models are defined by three key attributes (Morin, 

Bujacz, & Gagné, 2018). First, they are typological: They result in a classification system that 

seeks to parsimoniously and accurately categorize cases (individuals, teams, etc.) into 

qualitatively and quantitatively distinct subpopulations or profiles.  

Second, they are prototypical: Each case has a probability of membership in all of the 

estimated profiles based on degree of similarity between the case’s configuration of scores on 

the focal variables and the profile’s specific configuration of scores. GSEM-based latent 

profiles therefore do not provide a ‘definite’ classification (as would be the case for typical 

cluster analytic methods), but rather result in a probabilistic classification. Accounting for these 

membership probabilities provides a way to control for the measurement errors inherent in the 

classification of cases into unobserved (i.e., not directly measured) subpopulations. For 

example, forcing the direct assignment of each case into a profile without considering the 

inherently imprecise nature of this classification process would be analogous to taking the sum 

of the items (each including random measurement error) forming a particular scale, using the 

resulting score as a representation of the underlying construct. The resulting sum-score would 

thus be tainted by the incorporation of the random measurement error included in the items. In 

contrast using a CFA/SEM approach to obtain latent factors corrected for item-level 

measurement error provides a much more precise representation of the construct. Latent profiles 

are similarly corrected for classification errors reflecting the imperfect measurement of each 

case’s profile membership.  

Third, mixture models are typically treated as exploratory. Methodologically, mixture 

modeling is typically undertaken by contrasting results of profiles solutions including different 

numbers of profiles in order to select the optimal solution. This methodological characteristic 

does not exclude their use for confirmatory purposes, but simply means that the application of 

mixture models remains methodologically anchored in exploratory procedures (see Morin et 

al., 2018 for a more complete discussion). Moreover, truly confirmatory mixture models have 

been offered for research domains that are advanced enough to support a priori hypotheses 

regarding the number and nature of profiles (Finch & Bronk, 2011; Schmiege, Masyn, & Bryan, 

2018). Arguably, given the novelty of person-centered approaches across most of the research 

subfields encompassed within organizational behavior, we surmise that the ability to rely on 

such well-developed person-centered theoretical frameworks is likely to be the exception rather 

than the norms at this stage. However, even a truly confirmatory model still needs to be 

contrasted with an unconstrained, exploratory model to show that its fit to the data remains 

comparatively acceptable. In practice, the optimal model is most commonly determined on the 

basis of the substantive meaning, theoretical conformity, and statistical adequacy of the solution 

and guided by various statistical indicators (additional details on model estimation and 

statistical indicators are presented in Appendix A of the online supplements).  

Because of this methodologically exploratory nature, being able to empirically 

demonstrate the meaningfulness of the extracted latent profiles is a key consideration for 

person-centered analyses. More precisely, to support a substantive interpretation of latent 

profiles, researchers need to follow a construct validation process to show that these profiles: 
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(a) are theoretically meaningful, either by supporting a priori hypotheses or helping to generate 

new theoretically-grounded perspectives; (b) have heuristic value (i.e., provide a practically 

useful representation), (c) are meaningfully related to key covariates (i.e., predictors, outcomes, 

or correlates), and (d) generalize across samples or time points (Marsh, Lüdtke, Trautwein, & 

Morin, 2009; Morin, Morizot, et al., 2011; Nylund-Gibson, Grimm, Quirk, & Furlong, 2014).  

In the following sections, we present a user-friendly description of various types of 

cross-sectional and longitudinal mixture models available to organizational scholars. We first 

provide an introduction to the estimation of cross-sectional mixture models, with a focus on 

latent profile analyses (LPA), factor mixture analyses (FMA), mixture regression analyses 

(MRA), and tests of profile similarity. We then describe longitudinally-oriented mixture 

models, including longitudinal tests of profile similarity, latent transition analyses (LTA), and 

growth mixture analyses (GMA). We conclude with an overview of mixture models that include 

covariates, either through direct inclusion or auxiliary approaches (see Asparouhov & Muthén, 

2014; Bakk & Kuha, 2018; McLarnon & O’Neill, 2018). In the online supplements 

accompanying this chapter, we also provide detailed and comprehensive syntaxes to guide 

researchers in conducting these analyses using Mplus (Muthén & Muthén, 2017).  

Typical Mixture Models 

Latent Profile Analyses 

Latent profile analyses (LPA) are arguably the most basic type of mixture model. 

Through LPA, researchers can identify subpopulations of cases characterized by distinct 

configurations of scores on a series of, typically, continuous variables (e.g., Lubke & Muthén, 

2005). A LPA model is illustrated in Figure 1, where the octagon represents the latent 

categorical variable, C, and reflects k distinct latent profiles (i.e., C1 to Ck) defined as a function 

of the configuration of scores obtained on a series of i indicators (squares X1 to Xi). In a later 

section we will discuss the additional variables representing predictors (Pi) and outcomes (Oi) 

of profile membership, as well as the circle that reflects a simultaneously estimated continuous 

latent factor (Fj). Thus, LPA estimates k profiles from a set of i indicators, and is expressed as 

(for more technical details, see Masyn, 2013; Peugh & Fan, 2013; Sterba, 2013):  

2 2 2

1 1

( )
K K

k ik i k iki
k k

    
= −

= − +    (1) 

This model decomposes the variance of each indicator, i, into between-profile (the first 

term) and within-profile (the second term) components. In this model, profile-specific means, 

μik, and variances, σ2
ik, are expressed as a function of a density parameter, πk, which reflects the 

proportion of cases assigned to each profile. More constrained models can be used to estimate 

profiles differing only on the basis of the indicators’ mean (i.e., σ2
ik = σ2

i; Peugh & Fan, 2013). 

This is the default parameterization in some statistical packages, such as Mplus (Muthén, & 

Muthén, 2017), and corresponds to an implicit assumption of homogeneity of variance. 

However, relaxing this assumption is likely to provide a more realistic representation of real-

world phenomena (Morin, Maïano et al., 2011), and has been shown to result in more accurate 

parameter estimates (Peugh & Fan, 2013). Yet, the complexity of mixture models can make 

them more likely to converge on improper solutions (e.g., negative variance estimates) or to fail 

to reach convergence, especially when the estimated model is overparameterized (e.g., too 

many profiles, too many free parameters; Bauer & Shanahan, 2007). When this happens, more 

parsimonious (i.e., simpler) models involving profile-invariant variances (σ2
ik = σ2

i) should be 

investigated. We recommend starting with theoretically “optimal” models, and then reducing 

model complexity when necessary. 

 

Insert Figure 1 about here 

Though widely used with continuous indicator variables, LPA can accommodate 

indicators that have a variety of ordinal and categorical measurement scales (see Berlin, 
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Williams, & Parra, 2014; McLachlan & Peel, 2000; Muthén & Muthén, 2017). LPA can also 

help assess the relative value of alternative specifications (e.g., freely estimated variances, 

correlated uniquenesses between similarly-worded indicator variables, method factors, etc.) in 

terms of improvements in model fit (using a traditional likelihood ratio test; see Finch & Bronk, 

2011). Additionally, it is possible for LPA or other mixture models to account for multilevel or 

nested data structures (e.g., individuals within teams; Finch & French, 2014; Henry & Muthén, 

2010; Mäkikangas et al., 2018; Vermunt, 2011). 

LPA can be used to address various questions in the organizational behavior domain. 

For instance, LPA may be particularly helpful when investigating how various facets of a 

multidimensional inventory combine, and to identify the optimal number of profiles needed to 

summarize possible scores combinations. As well, multi-group LPA can be used to contrast the 

solutions obtained across distinct samples of cases (Morin, Meyer, Creusier, & Biétry, 2016). 

For instance, O’Neill, McLarnon, Hoffart, Woodley, and Allen (2018) used LPA to better 

capture work teams’ interpersonal conflict states. Based on the three dimensions of conflict 

(task, relationship, and process conflict; Jehn, 1995), these authors identified four discrete 

conflict state profiles, which were replicated across several samples (see also O’Neill et al., 

2017; O’Neill & McLarnon, 2018; O’Neill, McLarnon, Hoffart, Onen, & Rosehart, 2018). 

Alternatively, LPA can be used to assess the nature of profiles as they emerge across multiple 

measurement occasions (e.g., Chen, Morin, Parker, & Marsh, 2015). For instance, Kam, Morin, 

Meyer, and Topolnytsky (2016; see also Meyer, Morin, & Wasti, 2018) examined 

organizational commitment through a person-centered lens and explored the transitions that 

occurred between commitment profiles over time. We discuss this longitudinal extension of 

LPA later when we describe latent transition analysis.  

Importantly, the focal profile indicators included in an analysis do not need to tap a 

single, overarching conceptual dimension in order to be informative. For example, Shuffler, 

Kramer, Carter, Thayer, and Rosen (2018) offered a conceptual framework for combining 

disparate team-level variables within a multi-team system to provide a holistic view of how 

different teams’ expertise may combine to influence patient health outcomes (i.e., profiles 

derived on the basis of intrateam cohesion, efficacy, identity, and trust, combined with 

interteam adaption, communication, coordination, and monitoring). Likewise, Gillet, Morin, 

Sandrin, and Houle (2018, Study 2) relied on LPA to investigate the combined effects of 

workaholism and engagement for employees. Other relevant examples of LPA can be seen in 

the area of organizational commitment (for a review, see e.g., Meyer & Morin, 2016), 

individualism and collectivism cultural value orientations (O’Neill, McLarnon, Xiu, & Law, 

2016), and emotional labor strategies (Fouquereau et al., 2019; Gabriel, Daniels, Diefendorff, 

& Greguras, 2015). 

Factor Mixture Analyses 

Earlier, we noted that the GSEM framework is flexible enough to accommodate the 

simultaneous inclusion of latent continuous (i.e., factors) and categorical (i.e., profiles) 

variables within the same model. This is represented by the dotted lines (factor loadings) in 

Figure 1. A model that simultaneously incorporates both types of latent variables is referred to 

as factor mixture analysis (FMA). FMA can help researchers explore the underlying continuous 

and categorical nature of psychological constructs (Clark et al., 2013; Lubke & Neale, 2006; 

Masyn, Henderson, & Greenbaum, 2010). FMA can also be used to test the invariance of 

measures across unobserved subpopulations of participants (Tay, Newman, & Vermunt, 2011). 

Finally, FMA can also simply be used to control for a general tendency shared among indicators 

in order to estimate latent profiles while accounting for this shared tendency (McLarnon, 

Carswell, & Schneider, 2015; Morin & Marsh, 2015). For instance, Morin, Morizot et al. (2011) 

relied on FMA to account for an overall commitment factor when examining profiles derived 

on the basis of employees’ multiple foci of affective commitment. Likewise, McLarnon et al. 
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(2015) relied on FMA to identify profiles of individuals’ vocational interests while accounting 

for an overall tendency to ‘like’ various vocational activities. 

Mixture Regression Analyses 

Mixture regression analyses (MRA; see Figure 2) seek to identify latent profiles that 

differ from one another on the basis of the relations (i.e., regressions) estimated between distinct 

constructs (e.g., Van Horn et al., 2009). In contrast to LPA, which identifies subpopulations of 

cases characterized by distinct configuration of scores on a set of focal indicators, MRA 

identifies subpopulations among which focal constructs differentially relate to one another. In 

other words, the latent categorical variable identified in MRA can be seen as a moderator of the 

relations between a set of focal predictor and outcome variables. 

MRA requires the free estimation of the regression slope as well as of the outcomes’ 

means and variances (representing the intercept and residual of the regression model) across 

profiles in order to identify profile-specific regression equations. For example, Hofmans, De 

Gieter, and Pepermans (2013) examined the universality and assumption of a positive relation 

between pay satisfaction and job satisfaction. They found evidence for two subpopulations of 

employees, one (~80% of employees) characterized by a significant positive relation, but 

another (~20%) characterized by a non-significant regression relation between pay satisfaction 

and job satisfaction. 

However, more complex models combining LPA and MRA to simultaneously identify 

subpopulations of cases that differ on the basis of both the configuration of scores on a series 

of indicators as well as on the relations between these indicators can also be estimated to obtain 

richer information. For instance, Chénard-Poirier, Morin, and Boudrias (2017; also see Gillet 

et al., 2018, Study 3) identified subpopulations of employees that exemplified, to differing 

degrees, the complementariness and coherence of empowering leadership practices, as 

proposed by Lawler (1992, 2008). More precisely, the hybrid MRA model utilized by these 

authors allowed them to identify subpopulations that differed from one another in terms of 

exposure to distinct configuration of empowering leadership practices (as in LPA), as well as 

in terms of associations between these empowering leadership practices and work outcomes. 

Additionally, the GSEM framework makes it possible to extend MRA to mixture-SEM, 

allowing for the estimation of profiles defined on the basis of relations between latent 

continuous factors corrected for measurement errors (Bauer & Curran, 2004; Henson, Reise, & 

Kim, 2007; Jedidi, Jagpal, & DeSarbo, 1997; Morin, Scalas, & Marsh, 2015). 

 

Insert Figure 2 about here 

 

Multiple Group Tests of Profile Similarity 

As noted, one way to document the construct validity and meaningfulness of a profile 

solution involves the demonstration that a solution can be generalized to new samples. Similar 

to the principle of accumulation underlying meta-analysis, evidence to support generalizability 

and meaningfulness of person-centered research can be based on an accumulation of results 

from comparable studies (see Kabins, Xu, Bergman, Berry, & Wilson, 2016). In person-

centered research, the accumulation of studies should ideally reveal a core set of profiles that 

regularly emerge across studies and contexts, but may also reveal more peripheral 

subpopulations that may only exist under specific conditions and contexts (Solinger, Van 

Olffen, Roe, & Hofmans, 2013).  

A comprehensive analytical framework was recently proposed by Morin et al. (2016; 

also see Oivera-Aguilar & Rikoon, 2018) to guide systematic tests of LPA similarity across 

different samples, and this framework was extended to MRA by Morin and Wang (2016). This 

framework is similar to, and inspired by, traditional variable-centered measurement invariance 

analyses (e.g., Millsap, 2011). Table 1 presents an overview of the sequence of steps underlying 
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these tests, and associated Mplus syntax is presented in the online supplements. Assessing the 

extent to which a profile solution can generalize across observed groups based on differing 

industries, organizations, cultures, gender, or other theoretically important characteristic is also 

a key advantage of GSEM relative to alternative person-centered approaches such as cluster 

analyses. 

In developing procedures to assess multi-group profile similarity, Morin et al. (2016) 

documented the similarity of five profiles of employees defined on the basis of responses to the 

three component organizational commitment model (i.e., affective, normative, and continuance 

commitment; Meyer & Allen, 1991). Their results suggested robust generalization of the 

profiles across North American and French employees, supporting the cross-national 

comparability of the profiles. Likewise, Fouquereau et al. (2019) used a multi-group LPA 

approach to investigate how employees’ emotional labor profiles would differ across samples 

of employees differing in terms of customer contact quality and intensity. Meyer et al. (2018) 

also provided a unique application of the profile similarity framework to examine employees’ 

commitment to their organization in samples recruited before and after a severe economic crisis. 

Taku and McLarnon (2018), and Gillet, Morin, Cougot, and Gagné (2017) present two other 

recent examples of profile similarity tests.  

Longitudinal Mixture Models 

Longitudinal Tests of Profile Similarity and Latent Transition Analyses 

Multiple calls for longitudinal research have emphasized the importance of studying the 

temporal dynamics of a variety of phenomenon in organizational behavior research (e.g., 

Cronin et al., 2011; Mathieu et al., 2008, 2017). In this context, the ability of the GSEM 

framework to simultaneously consider more than one latent categorical variable in a single 

model is particularly interesting. For instance, GSEM makes it possible to include a series of 

time-specific LPAs based on the same set of indicators measured on repeated occasions (e.g., 

one LPA model describing the Time 1 profiles, and a second LPA model describing the Time 

2 profiles) into a single analytical solution. Such longitudinal LPA solutions make it possible 

for researchers to systematically assess the longitudinal similarity of LPA solutions using a 

framework similar to that described for multi-group profile similarity tests. Longitudinal LPA 

models are notably valuable for the assessment of stability and change of person-centered 

solutions over time, making it possible to systematically assess the impact of critical time-

related occurrences within organizations (e.g., organizational change, an intervention) or of key 

transitions in the life of employees (e.g., promotion, retirement; see e.g., Kam et al., 2016; 

Meyer et al., 2018; Solinger et al., 2013; Wang & Chan, 2011; Xu & Payne, 2016). In addition 

to providing a way to assess within-sample stability in the number, nature, within-profile 

variability, and relative size of latent profiles over time, longitudinal LPA can be extended to 

assess the similarity of associations between latent profiles and covariates (predictors and 

outcomes of profile membership) over time. Kam et al. (2016) referred to these forms of 

longitudinal similarity as within-sample stability. They also noted that longitudinal mixture 

models can also be used to assess within-person stability, reflecting the degree to which 

individual membership into specific profiles remains stable over time. Assessing this second 

form of stability requires the conversion of a longitudinal LPA into a latent transition analysis 

(LTA; see Figure 3), which provides a way to estimate individual transitions in profile 

membership over time (Collins & Lanza, 2010). 

 

Insert Figure 3 about here 

 

In its most basic form, a LTA incorporates time-specific LPA solutions estimated on 

the same set of repeated measures. This form of LTA should ideally be built upon the most 

similar longitudinal LPA model (see Table 1) to assess the degree to which the latent profiles 
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estimated at each time point can be considered to be comparable, while also maximizing the 

parsimony of the resulting model (Gillet, Morin, & Reeve, 2017). This LPA-to-LTA conversion 

should be completed before incorporating predictors and outcomes (for tests of predictive and 

explanatory similarity) in order to estimate these relations while explicitly controlling for the 

within-person stability of profile membership (Gillet, Morin, & Reeve, 2017). This conversion 

also provides a way to assess the extent to which predictors influence specific profile transitions 

over time (Ciarrochi, Morin, Sahdra, Litalien, & Parker, 2017). 

Morin et al.’s (2016) multi-group profile similarity framework can generally be applied 

to longitudinal models in a relatively straightforward manner (see the online supplements), with 

one exception. Indeed, in the presence of distributional similarity (i.e., when the profiles 

account for roughly equal proportions of the sample over time), equality constraints cannot be 

directly imposed on the relative size of the profiles over time in a straightforward manner. In 

technical terms, the parameters reflecting the unconditional probabilities of profile membership 

in a longitudinal LPA are modified in a LTA to reflect the conditional probabilities of profile 

membership at time t+1, as predicted by profile membership at time t. In this context (i.e., 

distributional similarity), a slightly more complex approach, detailed by Morin and Litalien 

(2017), is required. 

Several recent studies in the organizational behavior literature have leveraged LTA to 

investigate an array of research questions. For instance, both Kam et al. (2016) and Xu and 

Payne (2016) examined the stability of organizational commitment profiles using LTA. Both 

studies noted a strong degree of within-sample and within-person stability, with only a small 

number of individuals demonstrating transitions between profiles over time. However, the 

occurrence of transitions between commitment profiles had implications for turnover (see Xu 

& Payne, 2016) and was partly predicated on the basis of employees’ perceptions of 

management trustworthiness (Kam et al., 2016). McLarnon, DeLongchamp, and Schneider 

(2019) also used LTA to analyze responses to a conscientiousness questionnaire administered 

under conditions of ‘honest responding’ and ‘faking’ in order to examine the presence and 

nature of response distortion in high-stakes assessments. Their results suggested a degree of 

stability (i.e., non-faking) and dynamicity (slight and extreme fakers), and showed that both 

forms of faking were positively related to counterproductive behaviors. Although we discussed 

LTA applications incorporating multiple time-specific LPA solutions estimated based on the 

same set of repeated measures, LTA can be used to estimate the transitions between any types 

of mixture model (Nylund-Gibson et al., 2014). For instance, a LTA could be used to model 

how an LPA at Time 1 relates to a MRA at Time 2. 

Growth Mixture Analyses 

Growth mixture analyses (GMA) are designed to identify latent subpopulations of cases 

following discrete longitudinal trajectories on one or more variables over time. GMA represent 

a mixture extension of latent curve models (LCMs; see Bollen & Curran, 2006; Wickrama, Lee, 

O’Neal, & Lorenz, 2016). Within a LCM, indicator variables are assessed on multiple occasions 

and longitudinal trajectories of growth or change are estimated via random intercept and 

slope(s) factors. The random intercept factor reflects each case’s initial level on the repeated 

measures, whereas the random slope(s) factor(s) reflect different change functions describing 

the repeated measures over time. Although the most common LCM parameterization involves 

a single, linear slope, more complex trajectories can be estimated using multiple slope factors 

(i.e., quadratic/polynomial: Diallo, Morin, & Parker, 2014; piecewise: Wu, Zumbo, & Siegel, 

2011; non-linear: Ram & Grimm, 2009). Both the intercept and slope(s) factors are typically 

allowed to differ between across individuals (i.e., heterogeneity in the trajectories) and all 

individual trajectories are synthesized at the sample level by average intercept and slope(s) 

factors. 

In its most basic expression, GMA seeks to identify latent profiles characterized by 
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different average levels on these growth factors. This type of GMA identifies subpopulations 

of cases following distinct trajectories of change over repeated measurements (e.g., Morin, 

Maïano et al. 2011). More complex GMAs, in which the subpopulations are allowed to differ 

on all LCM parameters (i.e., intercept and slope variances and covariances, time-specific 

residuals) or to follow trajectories characterized by distinct functional forms (i.e., linear, 

quadratic, etc.) can also be estimated. GMA are thus well-suited for investigating dynamic or 

time-structured organizational phenomena, as well as study the effects of interventions, 

organizational changes, or transitions. A generic GMA model is illustrated in Figure 4. 

 

Insert Figure 4 about here 

 

A linear GMA for yit measures (i.e., variable y for case i at time t) is estimated with k 

distinct levels (k = 1, 2, …, K; i.e., the profiles), representing the unobserved latent categorical 

variable, with each individual having a probability of membership in each of the k levels, pk:  
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The k subscript indicates that, in its least restricted form, each profile can have its own 

unique LCM function, with most parameters differing across profiles. In Equations 3 and 4, 

respectively, αiyk and βiyk represent the random intercept and random slope of the trajectory for 

individual i on the repeated measure y in profile k. μαyk and μβyk represent the average intercept 

and slope of these trajectories within each k profile, and ζαyik and ζβyik represent the variability 

of the intercepts and slopes across cases within profiles. Residuals, εyitk, are generally free to 

vary over time, and reflect the individual-, time-, and class-specific residual variance. As noted, 
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In LCM, and GMA by association, time is represented by λt, the factor loading matrix 

that relates the repeated measures of y to the slope factor. λt must be coded to reflect the actual 

passage of time and should reflect the interval between measurement occasions. Assuming data 

collected at four equally-spaced, monthly measures of job satisfaction, it would be reasonable 

to set the intercept of the trajectory at Time 1 (E(αiyk) = μy1k; i.e., the mean of y1 in each profile. 

Thus, for a linear GMA, time would be coded λ1 = 0, λ2 = 1, λ3 = 2, λ4 = 3, therefore estimating 

profiles in which the intercept factor represents the average level of job satisfaction exhibited 

by profile members at Time 1, and the slope factor represents the average rate of monthly change 

in satisfaction across profile members. In this type of model, the factor loadings of the repeated 

measures on the intercept factor are typically fixed at 1, while those on the slope factor are 

typically fixed at a value reflecting these time codes (λt). Readers should consult Biesanz, Deeb-

Sossa, Papadakis, Bollen, and Curran (2004) and Mehta and West (2000) for a more detailed 

discussion of the technical issues involved in determining the time codes. 

Shape and Functional Forms of the Trajectories. 

When estimating GMA, a critical consideration involves the shape, or functional form, 

of the trajectories. Most commonly, polynomial functional forms are specified, in which linear 

and quadratic trajectories are the two most widely used. However, we also detail piecewise and 
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latent basis models, which we have found to be particularly useful to study the effects of change 

or interventions (i.e., piecewise) or non-linearity (i.e., latent basis).  

Linear. Equations 2 to 5 describe the linear GMA model, which assumes that all 

trajectories will be linear, and are characterized by steady increases, decreases, or static levels 

over time. As the intercept and slope factor(s), αiyk and βiyk, estimated within a GMA are random 

parameters, specific intercept and slope values will be derived for each case, and time-specific 

individual deviations from this average trajectory will be absorbed as a component of the time-

specific residuals, εyitk. This is the most basic GMA formulation, and at least three measurement 

occasions are required for its estimation. Still, stable trajectories (when the linear slope mean 

and variance are zero), an intercept-only model could also be estimated. In addition, when cases 

all share a common starting point, a model including only a random slope factor (but no random 

intercept factor) can be sufficient.  

Quadratic. A quadratic GMA incorporates an additional slope factor (e.g., Diallo, 

Morin, & Parker, 2014) reflecting a curvilinear trajectory (i.e., U-, or inverted U-shape). In this 

model, αiyk remains defined as in Equation 2 and λt remains coded as in the linear model. 

However, β1iyk and β2iyk, respectively, reflect the random linear (with β1iyk taking the place of 

βiyk) and quadratic (β2iyk) slopes. β2iyk represents the curvature of the trajectories, and is defined 

using the square of the linear time codes, λ2
t. 
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A quadratic GMA requires at least four measurement occasions for its estimation. 

Whereas a linear model can be easily interpreted without plotting the resulting function (by 

simply considering the intercept and rate of change for each profile), interpretation of a 

quadratic model is facilitated by a graphical representation. In a quadratic model, the average 

inflection point of the trajectories (i.e., the bottom of the U-, or the top of the inverted-U) can 

be calculated as -μβ1yk / (2 × μβ2yk). In a quadratic GMA, the intercept, linear slope, and quadratic 

slope factors are all random effects, allowing for the estimation of trajectories characterized by 

different functional forms across profiles in a single model. For example, a profile characterized 

by a linear and quadratic slope of 0 would display a stable or flat trajectory, whereas a profile 

with a quadratic slope of 0 but a non-zero linear slope would display a linear trajectory (see 

Morin, Maïano et al., 2011).  

Piecewise. Piecewise GMA models estimate distinct longitudinal trajectories before and 

after a specific turning point. Accordingly, piecewise models are particularly useful in the 

context of intervention studies, in which participants are exposed to a specific change over time, 

or of studies where participants undergo a specific life transition (Diallo & Morin, 2015). More 

specifically, piecewise models are estimated via the integration of two or more linear slopes 

factors within the same model, the first representing the pre-transition slope, and the second 

representing the post-transition slope (e.g., Diallo & Morin, 2015):  
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In a piecewise model, αiyk is defined as in Equation 3, Φyk is defined as in Equation 9, 
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and β1iyk and β2iyk are slopes reflecting linear trajectories before and after the transition point. In 

this model, two sets of time codes, λ1t and λ2t, are used to reflect time before and after the 

transition. Assuming a study has six equally-spaced measurement occasions with an intercept 

at Time 1 [E(αiyk) = μy1k], and a transition point after the third time point, λ1t would be coded as 

{0, 1, 2, 2, 2, 2} for λ1t=1 to λ1t=6. This represents the linear growth across the first three 

occasions, after which the equal loadings of 2 constrain the remaining longitudinal information 

to be absorbed by the second linear slope factor, λ2t. λ2t would then be coded as {0, 0, 0, 1, 2, 

3} for λ1t=1 to λ1t=6 to represent the linear growth across the final three occasions. 

Linear piecewise models defined on the basis of two slope factors require at least two 

measures before the transition point, at least two measures after the transition point, and a total 

of five measures (e.g., Diallo & Morin, 2015). However, Diallo and Morin (2015) noted that 

convergence problems are more likely to occur when a piecewise trajectory is estimated using 

only two measures point before the transition point (but not after). With additional time points, 

the piecewise model can be specified to include curvilinear trajectories before and/or after the 

transition point, and/or to incorporate more than one transition point. Despite the flexibility of 

piecewise models, they require prior knowledge of the transition point. In addition, the turning 

point location is assumed to be similar for all cases within a profile, although it can be located 

at a different time points in different profiles. When the transition point is not known a priori, 

but suspected to exist, then estimating a linear LCM as part of preliminary analyses and 

examining the modification indices associated with the slope’s loadings can help indicate the 

transition point (see Kwok, Luo, & West, 2010).  

Latent Basis. A limitation of typical GMA applications is that the same functional form 

is estimated in all profiles. Yet, as noted, flexibility remains due to the ability to constrain one 

or several of the intercept or slope(s) factors to be zero in specific profiles. For instance, the 

mean and variance of the quadratic slope factor could be constrained to zero in one profile 

assumed to follow a strictly linear trajectory. Likewise, constraining the first and second 

piecewise slopes to equality can be used to identify a profile in which the trajectories are 

unaffected by the transition point. Nonetheless, profiles with distinct functional forms are 

restricted to fall within the same family of polynomial functions (i.e., it is not possible to 

estimate exponential, logistic, and quadratic trajectories within the same model).  

The latent basis model provides a workaround this restriction. In LCM and GMA, only 

two time codes (i.e., factor loadings) in λt need to be fixed to specific values for identification 

purposes. More precisely, the measure marking the beginning (intercept) of the trajectory (i.e., 

y1) has to be fixed to 0, and another measure has to be fixed to 1. The remaining codes can be 

freely estimated (Grimm, Ram, & Estabrook, 2016; Ram & Grim, 2009; see Figure 4). In this 

context, the slope factor reflects the total amount of change occurring between the measures 

coded 0 and 1. Typically, these models rely on a specification in which the final measure (i.e., 

y6 in our six-occasion example) is set to 1, resulting in a slope factor reflecting the total change 

that has occurred over the course of the study (Δt1-t6). In this specification, the freely estimated 

factor loadings associated with the remaining measures (y2 to y5) reflect the proportion of this 

total change that has occurred at each time point (λtk × Δt1-t6). Alternatively, latent basis models 

estimated by setting the time code to 1 on the second measure (y2) will result in a slope factor 

reflecting the amount of change (Δt1-t2) occurring between the first two time points, and provides 

freely estimated factor loadings reflecting the proportion of that specific change (λtk × Δt1-t2) 

occurring at each of the following time points (y3 to y6). By freely estimating t-2 time codes 

across profiles, the latent basis model enables one to estimate distinct trajectories following 

completely distinct functional forms across profiles (see Morin, Maïano, Marsh, Nagengast, & 

Janosz, 2013).  

The latent basis model is similar to that expressed in Equations 2-5, but t-2 time codes 

are freely estimated in λt. Further, other than these t-2 time codes, the remaining time codes can 
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be freely estimated in each profile, λtk, allowing for the estimation of trajectories following 

different functional forms across profiles. Here, μβyk reflects the total change between the 

measures coded 0 and 1. The freely estimated loadings represent the proportion of μβyk attributed 

to each time point. A key restriction of this model however, is that each case within a specific 

profile will be assumed to follow a trajectory characterized by the same functional forms (i.e., 

the freely estimated factor loadings are non-random and assumed to be equal across cases within 

a profile). In other words, within-profile variability will exist in relation to the initial level 

(intercept) and to the total amount of change occurring over time, but not in relation to the 

functional form of this change. In contrast, polynomial and piecewise GMA allow for within-

profile variability on the growth parameters (e.g., a specific case could have an estimated 

quadratic slope of 0 in a profile otherwise characterized by a U-shape trajectory).  

Additional non-linear specifications. For a description of alternative non-linear 

functional forms (i.e., exponential, logistic, Gompertz, etc.), readers should consult Blozis 

(2007), Browne and du Toit (1991), and Grimm et al. (2016). However, in these more complex 

forms, the non-linear parameters describing the functional form are also non-random (similar 

to the latent basis model). Thus, despite allowing the total amount of change over time to vary 

across individuals and profiles, the shape (e.g., exponential) would itself be assumed to be equal 

across all individuals and profiles. 

Alternative Parameterizations  

We noted earlier that LPA could incorporate more or less restricted parameterizations 

depending on whether the residual variances of the indicator variables are freely estimated or 

constrained to equality across profiles. GMA are even more complex given that the profiles can 

be derived on the basis of any or all of the parameters of the underlying LCM (growth factor 

means, growth factor variances and covariances, and time-specific residuals). However, GMA 

in which all of these parameters are freely estimated across all profiles are seldom estimated, 

potentially due to their greater tendency to result in estimation or convergence difficulties due 

to overparameterization (Bauer & Shanahan, 2007; Chen, Bollen, Paxton, Curran, & Kirby, 

2001; Morin, Morizot et al., 2011).  

The simplest GMA parameterization, Nagin’s (1999) latent class growth analysis 

(LCGA), restricts the variances of the growth factors (e.g., Ψααyk, Ψβ1β1yk, and Ψβ2β2yk = 0) to be 

exactly zero, thus removing the latent variance-covariance matrix from the model (Φyk = 0). 

LCGA therefore forces all profile members to follow the exact same trajectory, making the 

time-specific residuals absorb any variation from this average trajectory. Further, LCGA also 

typically assumes the equality of the time-specific residuals across profiles (εyitk = εyit). Another 

common restricted parameterization of GMA is linked to the defaults of Mplus: freely estimated 

μαyk, μβ1yk, and μβ2yk in all profiles, but latent variance-covariance parameters and time-specific 

residuals constrained to equality across profiles (Φyk = Φy and εyitk = εyit). A final form of 

parameter constraint, which stems from the multilevel growth modeling tradition (Li & Hser, 

2011; Tofighi & Enders, 2007), involves the restriction of the time-specific residuals to equality 

across time points (i.e., homoscedasticity), while allowing them to differ (εyitk = εyik) or not (εyitk 

= εyi) across profiles. This restriction assumes that the model is able to explain each case’s 

observed data equally well across measurements.  

Morin, Maïano et al. (2011) referred to these restrictions as untested invariance 

assumptions unlikely hold in real-world situations. They also noted that these restrictions 

generally fail to be supported when empirically tested, and are likely to result in drastically 

different results when applied to real data. Even more problematic is that when these restricted 

parameterizations are used in applied research, arguments supporting their adequacy or tests of 

these assumptions (which are straightforward to conduct using likelihood ratio tests and the 

information criteria) are almost never provided. Diallo, Morin, and Lu’s (2016) simulation 

results supported these observations, leading them to suggest that the LCGA parameterization 
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should generally be avoided, and that GMA should ideally be estimated, at least initially, while 

allowing for the free estimation of all model parameters across profiles.  

This recommendation comes with the caveat that free estimation of all model parameters 

may not always be possible given a tendency of very complex models to converge on improper 

solutions, or to not converge at all (Diallo et al., 2016), especially when sample size is limited 

or few time points are available1. As noted, these difficulties tend to reflect an 

overparameterized model, in which case simpler models should be pursued (e.g., Bauer & 

Curran, 2003; Chen et al., 2001). For this reason, we recommend starting with estimation of 

more complex models, allowing the profiles to be defined on the basis of freely estimated 

parameters across profiles: μαyk, μβ1yk, μβ2yk, ζαyik, ζβ1yik, ζβ2yik, Φyk, εyitk, and also λtk in latent basis 

models. When these models fail to converge on proper solutions, then constraints should be 

progressively imposed. We suggest that the following constraints be implemented in sequence: 

(1) εyitk = εyik; (2) εyitk = εyit; (3) Φyk = Φy; (4) εyitk = εyi; (5) Φyk = Φy and εyitk = εyik; (6) Φyk = Φy 

and εyitk = εyit; (7) Φyk = Φy and εyitk = εyi. This sequence is anchored in the results from Diallo et 

al.’s (2016) study and implements constraints in a way that minimizes their impact on the 

model. For this reason, the first constraint that is proposed involves homoscedastic residuals (a 

typical specification of multilevel latent growth models) that are still allowed to differ across 

profiles to account for the possibility that profile specific parameters may not explain the 

repeated measures equally well. The next constraints are similar in nature and involves 

constraining the residual to equality across profiles but not time-points. As these constraints 

remain located at the residual level (a parameter that is not typically directly interpreted in 

GMA), we surmise that these constraints should be imposed before imposing constraints on the 

more important latent variance-covariance matrix, and before attempting combined constraints. 

However, this sequence should not be followed blindly, and should be adapted to the specific 

research question and context. 

The Role of Time 

One critical issue that is often misunderstood or ignored in organizational research is 

that LCM and GMA estimate longitudinal trajectories are defined as a function of a meaningful 

time variable. Thus, a strong underlying assumption is that the trajectories are based on a 

meaningful time referent (Mehta & West, 2000). For instance, although modeling trajectories 

as a function of the time at which the repeated measures were taken might make sense for a 

cohort of employees that all began their organizational tenure at the same time, it might not 

make sense when individuals were recruited at different pre-existing tenure levels. In this case, 

a more meaningful time metric (i.e., reflecting tenure, or age) might be required. For studies 

relying on cases differing from one another in terms of tenure, age, or any other meaningful 

time variable (e.g., time since an intervention), Mehta and West (2000) proposed a test to assess 

the appropriateness of relying on uniform time codes based on the time of measurement versus 

including a random coefficient to represent time. Specifically, Mehta and West (2000) noted 

that preexisting differences on the age, tenure, or other time variable could be considered 

negligible when: (1) the regression of the intercept factor from a LCM on this alternative time 

variable is equal to the slope factor mean, and (2) the regression of the slope factor of the LCM 

on this alternative time variable is equal to zero. In the online supplements, we show how to 

conduct this test. 

The application of Mehta and West’s (2000) test is likely to reveal situations in which 

tenure, age, or other time variables have a non-negligible impact on the individual trajectories. 

Likewise, in many situations, researchers may be specifically interested in modeling growth 

trajectories as a function of individually-varying time variables or measurement occasions. For 

 
1 It should be noted that, similar to LCM, sample size considerations for GMA involve not only the number of 

participants, but must also take into account the number of repeated measures, such that additional measurement 

occasions can, to a degree, offset smaller sample size (Diallo & Morin, 2015; Diallo et al., 2014). 
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these situations, Grimm et al. (2016) proposed an approach, illustrated at the end of the online 

supplements, allowing trajectories to be estimated on the basis of individually-varying time 

codes (e.g., reflecting participants’ age or tenure). This approach can be easily extended to 

studies in which each case was simply not measured at the same time. Alternatively, Mplus’ 

TSCORES procedure can also be used to accommodate individually-varying time metrics. 

However, their use is restricted to polynomial growth functions (e.g., linear, quadratic, etc.), 

whereas the procedure detailed in our online supplements is more generalizable (Grimm & 

Ram, 2009; Grimm et al., 2016; Sterba, 2014). 

Mixture Modeling with Covariates 

When compared to alternative person-centered methods, a major advantage of the 

GSEM framework is related to the methods available to investigate the role of covariates 

associated with profile membership (predictors, correlates, and/or outcomes; see Figure 1). 

Covariates can be conceptualized as having an influence on profile membership (i.e., 

predictors), as being influenced by profile membership (i.e., outcomes), or as being related to 

membership with no directionality assumed (i.e., correlates). As these types of covariates are 

investigated using different analytical approaches, the distinction between them needs to be 

made on the basis of theoretical expectations.  

After considerable debate between alternative recommendations, a series of simulation 

studies have recommended that covariates should only be included once the optimal 

unconditional profile solution has been selected. Thus, rather than including covariates at the 

beginning of the model-building process, the optimal unconditional structure and number of 

profiles should be selected before covariate relations are explored (Diallo, Morin, & Lu, 2017a; 

Hu, Leite, & Gao, 2017; Nylund-Gibson, & Masyn, 2016). This should preserve the integrity 

of the profiles identified in a manner that is not conditioned by the specific set of covariates 

considered in a specific study (Asparouhov & Muthén, 2014). Moreover, the direct inclusion 

of covariates in the final optimal model should not modify the nature of the profiles (i.e., means, 

variances, and other estimated parameters). Indeed, such a change would reflect a violation of 

the assumptions regarding the causal ordering of the predictors → profiles and/or profiles → 

outcomes relations (see Marsh et al., 2009; Morin, Morizot et al., 2011). Asparouhov and 

Muthén (2014) noted that this situation would cause the latent categorical variable to “lose its 

meaning” (p. 329). 

Direct Inclusion 

With these caveats in mind, directly including predictors and outcomes into the final 

retained solution helps to limit Type 1 errors and reduce biases in the estimation of the relations 

between covariates and the profiles (Bolck, Croon, & Hagenaars, 2004; Diallo & Lu, 2017). 

Further, to increase the likelihood that direct inclusion does not result in a change to the 

definition of a profile, it is generally useful to estimate the conditional model (i.e., with 

covariates) using the starting values taken from the optimal unconditional model in conjunction 

with disabling the random starting values function (see the online supplements). 

The direct inclusion approach for outcome variables involves specifying each outcome 

as an additional profile indicator. Further, parameter labels and constraints can be applied to 

enable tests of mean differences for each outcome across profiles (see the online supplements 

for an example). The direct inclusion approach for predictors involves estimating multinomial 

logistic regressions between each predictor and the likelihood of membership into each of the 

profiles. Multinomial logistic regression estimates k-1 effects for each pairwise comparison of 

profile membership (k = number of profiles). The multinomial logistic coefficients provide the 

expected increase in the log-odds of the outcome (i.e., the probability of membership in one 

profile versus another) for each unit increase in the predictor. Odds ratios (ORs) are typically 

reported to assist with the interpretation, and reflect the change in the likelihood of membership 

in a target profile versus another for each unit of increase in the predictor. An OR = e 
β, where 



Mixture Modeling 17 

e is the mathematical constant for the base of the natural logarithm (also known as Euler’s 

number, ℇ, and is ≈ 2.71828), and β is the multinomial regression coefficient. An OR = 2.00, 

for example, suggests that for each unit increase in the predictor, a case is twice as likely to be 

a member of the target profile versus the comparison profile. 

Automated Auxiliary Approaches 

In some situations, however, the direct inclusion of covariates will result in a change in 

the definition and structure of an optimal unconditional profile solution. For this situation, a 

variety of “auxiliary,” or inactive, approaches have been proposed to estimate relations between 

covariates and profiles in a way that minimize the occurrence of such changes (Asparouhov & 

Muthén, 2014; Lanza, Tan & Bray, 2013; Nylund-Gibson et al., 2014; Vermunt, 2010). So far, 

three main approaches have been built into Mplus.  

The first is the “three-step” approach (Asparouhov & Muthén, 2014; Bakk, Tekle, & 

Vermunt, 2013; Vermunt, 2010), which relies on the modal profile membership saved from the 

final unconditional model (Step 1). Modal profile membership is a nominal variable that is then 

used to estimate of a new latent profile solution in which the classification logits are fixed at 

values to account for classification uncertainty and to retain the probability-based classification 

of the optimal unconditional model (Step 2). This nominal variable-based solution is then used 

in subsequent analyses (Step 3). This three-step approach can be used both for predictors (the 

R3STEP function in Mplus) or continuous outcomes (the DU3STEP or the DE3STEP 

functions; DE3STEP constrains variances of the outcomes to equality across profiles, whereas 

DU3STEP allows them to be unequal).  

The second auxiliary approach, proposed by Lanza et al. (2013), is model-based and 

contrasts the profiles on continuous (using the DCON function in Mplus) or categorical 

outcomes (using the DCAT function). The DCON and DCAT approaches regresses the profiles 

on the outcomes, and then reverses the multinomial logistic link function using Bayes’ theorem 

(see Collier & Leite, 2017). 

The third auxiliary approach is the BCH approach, named in reference to its initial 

development by Bolck et al. (2004). In Mplus, the automated BCH approach is based on recent 

improvements brought to this approach by Vermunt (2010; also see Asparouhov & Muthén, 

2015; Bakk et al., 2013). This approach conducts a weighted multiple group ANOVA on the 

mean differences in continuous outcomes, where the weights are a function of the classification 

probabilities. 

Research on the relative efficacy of these approaches has shown that they all tend to 

perform reasonably well, although each has limitations in specific conditions (Asparouhov & 

Muthén, 2014; Bakk, Oberski, & Vermunt, 2016; Bakk et al., 2013; Bakk & Vermunt, 2016; 

Collier & Leite, 2017; Lanza et al., 2013; McLarnon & O’Neill, 2018; Vermunt, 2010). To 

summarize these limitations: (a) the Lanza et al. (2013) approach tends to underperform when 

the variances of the outcomes differ substantially across profiles and when entropy (an indicator 

of classification accuracy ranging from 0 to 1, where 1 indicates a perfect classification 

accuracy) is low, (b) the BCH approach may not perform well when the entropy or sample size 

are low, and sometimes results in extreme or impossible parameter estimates for the outcomes, 

and (c) the three-step approaches do not always completely prevent shifts in the definition of 

the profiles. Our experience with these approaches suggests that when they perform correctly, 

they all tend to produce similar estimates and inferences, although standard errors associated 

Lanza et al.’s (2013) approach may tend to be lower (suggesting greater precision and reduced 

Type 1 error rates; Collier & Leite, 2017). Though simulation studies are still ongoing, current 

recommendations suggest using the R3STEP procedure for predictors, the DCAT procedure for 

binary, categorical, and nominal outcomes, and one of the DU3STEP (the homogeneity of 

variance assumption underlying DE3STEP may not be realistic in many situations), DCON, or 

BCH procedures for continuous outcome variables one of the three other.  
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Correlates 

When considering profile correlates, Meyer and Morin (2016) recommended yet 

another, older, auxiliary approach that is implemented via the E function in Mplus. This 

approach relies on a Wald χ2 test based on pseudo-class draws (Asparouhov & Muthén, 2007; 

Wang, Brown, & Bandeen-Roche, 2005), and does not assume directionality in the associations 

between profiles and covariates. However, the E approach has been found to perform more 

poorly than the outcome auxiliary procedures described above (Asparouhov & Muthén, 2014; 

Bakk et al., 2013; Collier & Leite, 2017), suggesting that verifying its results with the 

DU3STEP, DCON, or BCH methods may be warranted. 

Manual Auxiliary Approaches 

One key limitation of the above-mentioned automated auxiliary approaches is that they 

are currently unable to simultaneously consider predictors and outcomes, complex patterns of 

relations (i.e., mediation, moderation), or mean differences of an outcome after accounting for 

control variables (i.e., conditional effects; McLarnon & O’Neill, 2018). Likewise, these 

approaches are not currently amenable for use with more than one latent categorical variable, 

such as in multi-group LPA or LTA. However, for many analyses it is possible to implement 

the BCH and three-step approaches manually. McLarnon and O’Neill (2018) recently described 

the steps and considerations involved with using the manual implementation of the BCH and 

three-step methods for use in more complex statistical models with mediation, moderation, and 

conditional outcome relations. Notably, the manual BCH method currently presents limitations 

regarding missing covariate data, and can only be used with a single categorical variable. Morin 

and Litalien (2017), however, have provided a thorough discussion of the manual three-step 

method in models that include more than one latent categorical variable.  

Growth Mixture Analyses with Covariates 

In the context of GMA, rather than LPA, questions about covariate relations are 

somewhat more complex because predictor relations can involve profile membership as well as 

the intercept and slope factors. To simplify issues around predictor relations in GMA, Morin, 

Rodriguez, Fallu, Maïano, and Janosz (2012) and Morin et al. (2013) suggested relying upon a 

stepwise approach to incorporate predictors. Here, a null effects model (i.e., predictors relations 

are constrained to zero) is compared against a series of alternative models in which the 

predictors are allowed to predict: (a) profile membership, (b) profile membership and the 

growth factors, and (c) profile membership and the growth factors with the predictor relations 

free to vary across profiles. Selection of the optimal predictor model is facilitated by a 

comparison of model fit criteria (i.e., information criteria, traditional likelihood ratio test). A 

similar procedure could be implemented for investigating the structure of outcome relations, as 

well for time-varying covariates that could be allowed to predict (or to be predicted from) the 

repeated measures in a way that is identical across profiles and time points or allowed to differ 

across profiles and/or time points (see Diallo, Morin, & Lu, 2017b). For applications in which 

covariate inclusion results in profile membership changes, the BCH or three-step procedures 

could be used with manual implementation to facilitate the same sequence of predictive and 

outcome tests. We more extensively illustrate the incorporation of time-varying covariates in 

GMA in the online supplements.  

Conclusion 

In this chapter, we presented a broad overview of mixture modeling with the intention 

of illustrating this methodological framework for use in organizational behavior research. As 

noted, mixture modeling is generally considered an exploratory person-centered method 

(though confirmatory procedures are available) that is typological and prototypical in nature. 

Mixture modeling aims to classify cases into subpopulations (latent profiles) based on their 

pattern of observed (or latent) scores. Following Marsh and Hau’s (2007) call for substantive-

methodological synergies, we sought to provide a user-friendly introduction to several of the 



Mixture Modeling 19 

mixture models available to researchers interested in applying person-centered strategies. Our 

aim was to help organizational researchers better understand and effectively apply these 

advanced methodologies. Although we have focused on person-centered approaches in this 

chapter, person- and variable-centered approaches are not necessarily in opposition, should be 

viewed as complementary, and can even be combined to provide a more comprehensive view 

of the same phenomena (see McLarnon & O’Neill, 2018; Morin, Boudrias, Marsh, Madore, & 

Desrumaux, 2016; Morin et al., 2017). We hope that this chapter has helped generate and test 

creative research ideas, and has motivated readers to pursue person-centered research in an 

informed and effective manner. As a final reflection, it is important to keep in mind that mixture 

models remain complex methods, and may be quite challenging for inexperienced researchers. 

We therefore recommend starting with more straightforward models (i.e., LPA, LPA with 

covariates, or FMA), before moving on to more complex models (i.e., MRA, multiple-group 

LPA, GMA, or LTA). We are optimistic that this chapter and the analytical possibilities offered 

here will help organizational researchers navigate the complexities of mixture modeling and 

person-centered analyses. 

  



Mixture Modeling 20 

References 

Asparouhov, T., & Muthén, B.O. (2007). Wald test of mean equality for potential latent class 

predictors in mixture modeling. Los Angeles: Muthén & Muthén. 

Asparouhov, T., & Muthén, B.O. (2014). Auxiliary variables in mixture modeling: Three-step 

approaches using Mplus. Structural Equation Modeling, 21, 329-341. 

doi:10.1080/10705511.2014.915181 

Asparouhov, T. & Muthén, B.O. (2015). Auxiliary variables in mixture modeling: Using the 

BCH method in Mplus to estimate a distal outcome model and an arbitrary secondary 

model (Mplus Web Note #21). Retrieved from 

https://www.statmodel.com/download/asparouhov_muthen_2014.pdf 

Bagozzi, R.P., Fornell, C., & Larcker, D. (1981). Canonical correlation analysis as a special 

case of a structural relations model. Multivariate Behavioral Research, 16, 437-454. 

doi:10.1207/s15327906mbr1604_2 

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between latent classes and external 

variables. Psychometrika, 83, 871-892. doi:10.1007/s11336-017-9592-7 

Bakk, Z., Oberski, D., & Vermunt, J. (2016). Relating latent class membership to continuous 

distal outcomes: Improving the LTB approach and a modified three-step 

implementation. Structural Equation Modeling, 23, 278-289. 

doi:10.1080/10705511.2015.1049698 

Bakk, Z., Tekle, F.T., & Vermunt, J.K. (2013). Estimating the association between latent class 

membership and external variables using bias-adjusted three-step approaches. 

Sociological Methodology, 43, 272-311. doi:10.1177/0081175012470644 

Bakk, Z., & Vermunt, J.K. (2016). Robustness of stepwise latent class modeling with 

continuous distal outcomes. Structural Equation Modeling, 23, 20-31. 

doi:10.1080/10705511.2014.955104 

Bauer, D.J., & Curran, P.J. (2003). Distributional assumptions of growth mixture models over-

extraction of latent trajectory classes. Psychological Methods, 8, 338-363. 

doi:10.1037/1082-989X.8.3.338 

Bauer, D.J., & Curran, P.J. (2004). The integration of continuous and discrete latent variable 

models: Potential problems and promising opportunities. Psychological Methods, 9, 3-

29. doi:10.1037/1082-989x.9.1.3 

Bauer, D.J., & Shanahan, M.J. (2007). Modeling complex interactions: Person-centered and 

variable-centered approaches. In T.D. Little, J.A. Bovaird & N.A. Card (Eds.), 

Modeling ecological and contextual effects in longitudinal studies of human 

development (pp. 255-283). Mahwah, NJ: Lawrence Erlbaum. 

Berlin, K.S., Williams, N.A., & Parra, G.R. (2014). An introduction to latent variable mixture 

modeling (Part 1): Cross sectional latent class and latent profile analyses. Journal of 

Pediatric Psychology, 39, 174-187. doi:10.1093/jpepsy/jst084 

Biesanz, J.C., Deeb-Sossa, N., Papadakis, A.A., Bollen, K.A., & Curran, P.J. (2004). The role 

of coding time in estimating and interpreting growth curve models. Psychological 

Methods, 9, 30-52. doi:10.1037/1082-989x.9.1.30 

Blozis, S.A. (2007). On fitting nonlinear latent curve models to multiple variables measured 

longitudinally. Structural Equation Modeling, 14, 179-201. 

doi:10.1080/10705510709336743 

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with 

categorical variables: One-step versus three-step estimators. Political Analysis, 12, 3-

27. doi:10.1093/pan/mph001 

Bollen, K.A. (1989). Structural equations with latent variables. New York, NY: John Wiley. 

Bollen, K.A., & Curran, P.J. (2006). Latent curve models: A structural equation perspective. 

Hoboken, NJ: Wiley. 



Mixture Modeling 21 

Borsboom, D., Mellenbergh, G.J., & van Heerden, J. (2003). The theoretical status of latent 

variables. Psychological Review, 110, 203-218. doi:10.1037/0033-295x.110.2.203 

Browne, M.W., & du Toit, S.H.C. (1991). Models for learning data. In L. Collins & J. L. Horn 

(Eds.), Best methods for the analysis of change (pp. 47-68). Washington, DC: APA. 

Brusco, M.J., Steinley, D., Cradit, J.D., & Singh, R. (2011). Emergent clustering methods for 

empirical OM research. Journal of Operations Management, 30, 454-466. 

doi:10.1016/j.jom.2012.06.001 

Chen, F., Bollen, K.A., Paxton, P., Curran, P.J., & Kirby, J. (2001). Improper solutions in 

structural models: Causes, consequences, strategies. Sociological Methods & Research, 

29, 468-508. doi:10.1177/0049124101029004003 

Chen, X., Morin, A.J.S, Parker, P.D., & Marsh, H.W. (2015). Developmental investigation of 

the domain-specific nature of the life satisfaction construct across the post-school 

transition. Developmental Psychology, 51, 1074-1085. doi:10.1037/a0039477 

Chénard-Poirier, L.-A., Morin, A.J.S., & Boudrias, J.-S. (2017). On the merits of coherent 

leadership empowerment behaviors: A mixture regression approach. Journal of 

Vocational Behavior, 103, 66-75. doi:10.1016/j.jvb.2017.08.003 

Ciarrochi, J., Morin, A.J.S., Sahdra, B., Litalien, D., & Parker, P.D. (2017). A longitudinal 

person-centered perspective on youth social support: Relations with psychological 

wellbeing. Developmental Psychology, 53, 1154-1169. doi:10.1037/dev0000315 

Clark, S.L., Muthén, B.O., Kaprio, J., D’Onofrio, B.M., Viken, R., & Rose, R.J. (2013). Models 

and strategies for factor mixture analysis: An example concerning the structure 

underlying psychological disorders. Structural Equation Modeling, 20, 681-703. 

doi:10.1080/10705511.2013.824786 

Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 

70, 426-443. doi:10.1037/h0026714 

Collier, Z.K., & Leite, W.L. (2017). A comparison of three-step approaches for auxiliary variables 

in latent class and latent profile analysis. Structural Equation Modeling, 24, 819-830. 

doi:10.1080/10705511.2017.1365304 

Collins, L.M., & Lanza, S.T. (2010). Latent class and latent transition analysis: With 

applications in the social, behavioral, and health sciences. Hoboken, NJ: Wiley. 

Cortina, J.M., Aguinis, H., & DeShon, R.P. (2017). Twilight of dawn or of evening? A century 

of research methods in the Journal of Applied Psychology. Journal of Applied 

Psychology, 102, 274-290. doi:10.1037/apl0000163 

Cronin, M.A., Weingart, L.R., & Todorova, G. (2011). Dynamics in groups: Are we there yet? 

Academy of Management Annals, 5, 571-612. doi:10.1080/19416520.2011.590297 

Delbridge, R., & Fiss, P.C. (2013). Editors’ comments: Styles of theorizing and the social 

organization of knowledge. Academy of Management Review, 38, 325-331. 

doi:10.5465/amr.2013.0085 

Diallo, T.M.O, & Lu, H. (2017). On the application of the three-step approach to growth 

mixture models. Structural Equation Modeling, 24, 714-732. 

doi:10.1080/10705511.2017.1322516 

Diallo, T.M.O, & Morin, A.J.S. (2015). Power of latent growth curve models to detect 

piecewise linear trajectories. Structural Equation Modeling, 22, 449-460. 

doi:10.1080/10705511.2014.935678 

Diallo, T.M.O, Morin, A.J.S., & Lu, H. (2016). Impact of misspecifications of the latent 

variance-covariance and residual matrices on the class enumeration accuracy of growth 

mixture models. Structural Equation Modeling, 23, 507-531. 

doi:10.1080/10705511.2016.1169188 

Diallo, T.M.O., Morin, A.J.S., & Lu, H. (2017a). The impact of total and partial inclusion or 

exclusion of active and inactive time invariant covariates in growth mixture models. 



Mixture Modeling 22 

Psychological Methods, 22, 166-190. doi:10.1037/met0000084 

Diallo, T.M.O., & Morin, A.J.S., & Lu, H. (2017b). Performance of growth mixture models in 

the presence of time-varying covariates. Behavior Research Methods, 49, 1951-1965. 

doi:10.3758/s13428-016-0823-0 

Diallo, T.M.O., Morin, A.J.S., & Parker, P.D. (2014). Statistical power of latent growth curve 

models to detect quadratic growth. Behavior Research Methods, 46, 357-371. 

doi:10.3758/s13428-013-0395-1 

Finch, W.H., & Bronk, K.C. (2011). Conducting confirmatory latent class analysis in Mplus. 

Structural Equation Modeling, 18, 132-151. doi:10.1080/10705511.2011.532732 

Finch, W.H., & French, B.F. (2014). Multilevel latent class analysis: Parametric and 

nonparametric models. Journal of Experimental Education, 82, 307-333. 

doi:10.1080/00220973.2013.813361 

Fouquereau, E., Morin, A.J.S., Lapointe, É., Mokounkolo, R., & Gillet, N. (2019, in press). 

Emotional labor profiles: Associations with key predictors and outcomes. Work & 

Stress. Early View doi:10.1080/02678373.2018.1502835 

Gabriel, A.S., Daniels, M.A., Diefendorff, J.M., & Greguras, G.J. (2015). Emotional labor 

actors: A latent profile analysis of emotional labor strategies. Journal of Applied 

Psychology, 100, 863-879. doi:10.1037/a0037408 

Gibson, W.A. (1959). Three multivariate models: Factor analysis, latent structure analysis, and 

latent profile analysis. Psychometrika, 24, 229-252. doi:10.1007/bf02289845 

Gillet, N., Morin, A.J.S., Cougot, B., & Gagné, M. (2017). Workaholism profiles: Associations 

with determinants, correlates, and outcomes. Journal of Occupational and 

Organizational Psychology, 90, 559-586. doi:10.1111/joop.12185 

Gillet, N., Morin, A.J.S., & Reeve, J. (2017). Stability, change, and implications of students’ 

motivation profiles: A latent transition analysis. Contemporary Educational 

Psychology, 51, 222-239. doi:10.1016/j.cedpsych.2017.08.006 

Gillet, N., Morin, A.J.S, Sandrin, E., & Houle, S.A. (2018). Investigating the combined effects 

of workaholism and work engagement: A substantive-methodological synergy of 

variable-centered and person-centered methodologies. Journal of Vocational Behavior, 

109, 57-77. doi:10.1016/j.jvb.2018.09.006 

Grimm, K.J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural 

Equation Modeling, 16, 676-701. doi:10.1080/10705510903206055 

Grimm, K.J., Ram, N. & Estabrook, R. (2016). Growth modeling: Structural equation and 

multilevel approaches. New York: Guilford.  

Henry, K.L., & Muthén, B.O. (2010). Multilevel latent class analysis: An application of 

adolescent smoking typologies with individual and contextual predictors. Structural 

Equation Modeling, 17, 193-215. doi:10.1080/10705511003659342 

Henson, J.M., Reise, S.P., & Kim, K.H. (2007). Detecting mixtures from structural model 

differences using latent variable mixture modeling: A comparison of relative model fit 

statistics. Structural Equation Modeling, 14, 202-226. 

doi:10.1080/10705510709336744 

Hofmans, J., De Gieter, S., & Pepermans, R. (2013). Individual differences in the relationship 

between satisfaction with job rewards and job satisfaction. Journal of Vocational 

Behavior, 82, 1-9. doi:10.1016/j.jvb.2012.06.007 

Hofmans, J., Vantilborgh, T., & Solinger, O.N. (2018). K-centres functional clustering: A 

person-centered approach to modeling complex nonlinear growth trajectories. 

Organizational Research Methods, 21, 905-930. doi:10.1177/1094428117725793 

Howard, M.C., & Hoffman, M.E. (2018). Variable-centered, person-centered, and person-specific 

approaches: where theory meets the method. Organizational Research Methods, 21, 846-

876. doi:10.1177/1094428117744021 



Mixture Modeling 23 

Hu, J., Leite, W.L., & Gao, M. (2017). An evaluation of covariates to assist in class enumeration in 

linear growth mixture modeling. Behavioral Research Methods, 49, 1179-1190. 

doi:10.3758/s13428-016-0778-1 

Hull, C.L. (1922). The conversion of test scores into series which shall have any assigned mean 

and degree of dispersion. Journal of Applied Psychology, 6, 298-300. 

doi:10.1037/h0071530 

Hull, C.L. (1923). Prediction formulae for teams of aptitude tests. Journal of Applied 

Psychology, 7, 277-284. doi:10.1037/h0073241 

Jedidi, K., Jagpal, H.S., & DeSarbo, W.S. (1997). Finite-mixture structural equation models for 

response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39-

59. doi:10.1287/mksc.16.1.39 

Jehn, K.A. (1995). A multimethod examination of the benefits and detriments of intragroup 

conflict. Administrative Science Quarterly, 40, 256-283. doi:10.2307/2393638 

Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor 

analysis. Psychometrika, 34, 183-202. doi:10.1007/bf02289343 

Jöreskog, K.G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 

239-251. doi:10.2307/2334833 

Kabins, A.H., Xu, X., Bergman, M. E., Berry, C.M., & Wilson, V.L. (2016). A profile of 

profiles: A meta-analysis of the nomological net of commitment profiles. Journal of 

Applied Psychology, 101, 881-904. doi:10.1037/apl0000091 

Kam, C., Morin, A.J.S., Meyer, J.P., & Topolnytsky, L. (2016). Are commitment profiles stable 

and predictable? A latent transition analysis. Journal of Management, 42, 1462-1490. 

doi:10.1177/0149206313503010 

Knapp, T.R. (1978). Canonical correlation analysis: A general parametric significance testing 

system. Psychological Bulletin, 85, 410-416. doi:10.1037/0033-2909.85.2.410 

Kwok, O., Luo, W., & West, S.G. (2010). Using modification indexes to detect turning points 

in longitudinal data: A Monte Carlo study. Structural Equation Modeling, 17, 216-240. 

doi:10.1080/10705511003659359 

Lanza, S.T., Tan, X., & Bray, B.C. (2013). Latent class analysis with distal outcomes: A flexible 

model-based approach. Structural Equation Modeling, 20, 1-26. 

doi:10.1080/10705511.2013.742377 

Lawler, E.E. (1992). The ultimate advantage: Creating the high involvement organization. San 

Francisco: Jossey-Bass. 

Lawler, E.E. (2008). Talent: Making people your competitive advantage. San Francisco: 

Jossey-Bass. 

Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin. 

Li, L., & Hser, Y.-I. (2011). On inclusion of covariates for class enumeration of growth mixture 

models. Multivariate Behavioral Research, 46, 266-302. 

doi:10.1080/00273171.2011.556549 

Lubke, G.H., & Muthén, B.O. (2005). Investigating population heterogeneity with factor 

mixture models. Psychological Methods, 10, 21-39. doi:10.1037/1082-989X.10.1.21 

Lubke, G., & Neale, M.C. (2006). Distinguishing between latent classes and continuous factors: 

Resolution by maximum likelihood?. Multivariate Behavioral Research, 41, 499-532. 

doi:10.1207/s15327906mbr4104_4 

Mäkikangas, A., Tolvanen, A., Aunola, K., Feldt, T., Mauno, S., & Kinnunen, U. (2018). 

Multilevel latent profile analysis with covariates: Identifying job characteristics profiles 

in hierarchical data as an example. Organizational Research Methods, 21, 931-954. 

doi:10.1177/1094428118760690 

Marsh, H.W., & Hau, K.-T. (2007). Applications of latent-variable models in educational 

psychology: The need for methodological-substantive synergies. Contemporary 



Mixture Modeling 24 

Educational Psychology, 32, 151-170. doi:10.1016/j.cedpsych.2006.10.008 

Marsh, H.W., Hau, K.-T., Wen, Z., Nagengast, B., & Morin, A.J.S. (2013). Moderation. In T.D. 

Little (Ed.), Oxford handbook of quantitative methods (Vol. 2, pp. 361-386), New York: 

Oxford University Press. 

Marsh, H.W., Lüdtke, O., Trautwein, U., & Morin, A.J.S. (2009). Classical latent profile 

analysis of academic self-concept dimensions: Synergy of person- and variable-centered 

approaches to theoretical models of self-concept. Structural Equation Modeling, 16, 

191-225. doi:10.1080/10705510902751010 

Masyn, K. (2013). Latent class analysis and finite mixture modeling. In T.D. Little (Ed.), The 

Oxford handbook of quantitative methods in psychology (Vol. 2, pp. 551-611). New 

York: Oxford University Press. 

Masyn, K., Henderson, C., & Greenbaum, P. (2010). Exploring the latent structures of 

psychological constructs in social development using the Dimensional-Categorical 

Spectrum. Social Development, 19, 470-493. doi:10.1111/j.1467-9507.2009.00573.x 

Mathieu, J.E., Hollenbeck, J.R., van Knippenberg, D., & Ilgen, D.R. (2017). A century of work 

teams in the Journal of Applied Psychology. Journal of Applied Psychology, 102, 452-

467. doi:10.1037/apl0000128 

Mathieu, J.E., Maynard, M.T., Rapp, T., & Gilson, L. (2008). Team effectiveness 1997-2007: 

A review of recent advancements and a glimpse into the future. Journal of Management, 

34, 410-476. doi:10.1177/0149206308316061 

McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley. 

McLarnon, M.J.W., Carswell, J.J., & Schneider, T.J. (2015). A case of mistaken identity? 

Latent profiles in vocational interests. Journal of Career Assessment, 23, 166-185. 

doi:10.1177/1069072714523251 

McLarnon, M.J.W., DeLongchamp, A.C., & Schneider, T.J. (2019). Faking it! Individual 

differences in types and degrees of faking behavior. Personality and Individual 

Differences, 138, 88-95. doi:10.1016/j.paid.2018.09.024 

McLarnon, M.J.W. & O’Neill, T.A. (2018). Extensions of auxiliary variable approaches for the 

investigation of mediation, moderation, and conditional effects in mixture models. 

Organizational Research Methods, 21, 955-982. doi:10.1177/1094428118770731 

Mehta, P.D., & West, S.G. (2000). Putting the individual back into individual growth curves. 

Psychological Methods, 5, 23-43. doi:10.1037/1082-989x.5.1.23 

Meyer, J.P., & Allen, N.J. (1991). A three-component conceptualization of organizational 

commitment. Human Resource Management Review, 1, 61-89. doi:10.1016/1053-

4822(91)90011-z 

Meyer, J.P., & Morin, A.J.S. (2016). A person-centered approach to commitment research: 

Theory, research, and methodology. Journal of Organizational Behavior, 37, 584-612. 

doi:10.1002/job.2085 

Meyer, J.P., Morin, A.J.S., & Wasti, A. (2018). Employee commitment before and after an 

economic crisis: A stringent test of profile similarity. Human Relations, 71, 1204-1233. 

doi:10.1177/0018726717739097 

Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York: Routledge. 

Morin, A.J.S, Boudrias, J.S., Marsh, H.W., Madore, I., & Desrumaux, P. (2016). Further 

reflections on disentangling shape and level effects in person-centered analyses: An 

illustration exploring the dimensionality of psychological health. Structural Equation 

Modeling, 23, 438-454. doi:10.1080/10705511.2015.1116077 

Morin, A.J.S., Boudrias, J.-S., Marsh, H.W., McInerney, D.M., Dagenais-Desmarais, V., 

Madore, I., & Litalien, D. (2017). Complementary variable- and person-centered 

approaches to the dimensionality of psychometric constructs: Application to 

psychological wellbeing at work. Journal of Business and Psychology, 32, 395-419. 



Mixture Modeling 25 

doi:10.1007/s10869-016-9448-7 

Morin, A.J.S., Bujacz, A., & Gagné, M. (2018). Person-centered methodologies in the 

organizational sciences: Introduction to the Feature Topic. Organizational Research 

Methods, 21, 803-813. doi:10.1177/1094428118773856 

Morin, A.J.S., & Litalien, D. (2017). Webnote: Longitudinal tests of profile similarity and latent 

transition analyses. Retrieved January 5, 2019 from 

https://smslabstats.weebly.com/uploads/1/0/0/6/100647486/lta_distributional_similarity_v

02.pdf. Montreal, QC: Substantive Methodological Synergy Research Laboratory.   

Morin, A.J.S., Maïano, C., Marsh, H.W., Nagengast, B., & Janosz, M. (2013). School life and 

adolescents’ self-esteem trajectories. Child Development, 84, 1967-1988. 

doi:10.1111/cdev.12089 

Morin, A.J.S., Maïano, C., Nagengast, B., Marsh, H., Morizot, J., & Janosz, M. (2011). Growth 

mixture modeling of adolescents’ trajectories of anxiety: The impact of untested invariance 

assumptions on substantive interpretations. Structural Equation Modeling, 18, 613-648. 

doi:10.1080/10705511.2011.607714 

Morin, A.J.S., & Marsh, H.W. (2015). Disentangling shape from level effects in person-

centered analyses: An illustration based on university teachers’ multidimensional 

profiles of effectiveness. Structural Equation Modeling, 22, 39-59. 

doi:10.1080/10705511.2014.919825 

Morin, A.J.S., Meyer, J.P., Creusier, J., & Biétry, F. (2016). Multiple-group analysis of 

similarity in latent profile solutions. Organizational Research Methods, 19, 231-254. 

doi:10.1177/1094428115621148 

Morin, A.J.S., Morizot, J., Boudrias, J.-S., & Madore, I., (2011). A multifoci person-centered 

perspective on workplace affective commitment: A latent profile/factor mixture 

analysis. Organizational Research Methods, 14, 58-90. 

doi:10.1177/1094428109356476 

Morin, A.J.S., Rodriguez, D., Fallu, J.-S., Maïano, C., & Janosz, M. (2012). Academic achievement 

and adolescent smoking: A general growth mixture model. Addiction, 107, 819-828. 

doi:10.1111/j.1360-0443.2011.03725.x 

Morin, A.J.S., Scalas, L.F., & Marsh, H.W. (2015). Tracking the elusive actual-ideal discrepancy 

model within latent subpopulations. Journal of Individual Differences, 36, 65-72. 

doi:10.1027/1614-0001/a000157 

Morin, A.J.S., & Wang, J.C.K. (2016). A gentle introduction to mixture modeling using 

physical fitness data. In N. Ntoumanis, & N. Myers (Eds.), An introduction to 

intermediate and advanced statistical analyses for sport and exercise scientists (pp. 

183-210). London, UK: Wiley. 

Muthén, B.O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81-

117. doi:10.2333/bhmk.29.81 

Muthén, L.K., & Muthén, B.O. (2017). Mplus User’s Guide (8th ed.). Los Angeles, CA: Muthén 

& Muthén. 

Nagin, D.S. (1999). Analyzing developmental trajectories: A semi-parametric, group-based 

approach. Psychological Methods, 4, 139-157. doi:10.1037/1082-989x.4.2.139 

Nylund-Gibson, K.L., Grimm, R., Quirk, M., & Furlong, M. (2014). A latent transition mixture 

model using the three-step specification. Structural Equation Modeling, 21, 439-454. 

doi:10.1080/10705511.2014.915375 

Nylund-Gibson, K., & Masyn, K.E. (2016). Covariates and mixture modeling: Results of a 

simulation study exploring the impact of misspecified effects on class enumeration. 

Structural Equation Modeling, 23, 782-797. doi:10.1080/10705511.2016.1221313 

O’Neill, T.A., Hoffart, G.C., McLarnon, M.J.W., Woodley, H.J., Eggermont, M., Rosehart, W., & 

Brennan, R. (2017). Constructive controversy and reflexivity training promotes effective 



Mixture Modeling 26 

conflict profiles and outcomes in student learning teams. Academy of Management 

Learning and Education, 17, 257-276. doi:10.5465/amle.2015.0183 

O’Neill, T.A., & McLarnon, M.J.W. (2018). Optimizing team conflict dynamics for high 

performance teamwork. Human Resource Management Review, 28, 378-394. 

doi:10.1016/j.hrmr.2017.06.002 

O’Neill, T.A., McLarnon, M.J.W., Hoffart, G., Onen, D., & Rosehart, W. (2018). The multilevel 

nomological net of team conflict profiles. International Journal of Conflict Management, 

29, 24-46. doi:10.1108/IJCMA-05-2016-0038 

O’Neill, T.A., McLarnon, M.J.W., Hoffart, G.C., Woodley, H.J., & Allen, N.J. (2018). The 

structure and function of team conflict state profiles. Journal of Management, 44, 811-836. 

doi:10.1177/0149206315581662 

O’Neill, T.A., McLarnon, M.J.W., Xiu, L., & Law, S.J. (2016). Core self-evaluations, perceptions 

of group potency, and job performance: The moderating role of individualism and 

collectivism cultural profiles. Journal of Occupational and Organizational Psychology, 89, 

447-473. doi:10.1111/joop.12135 

Olivera-Aguilar, M., & Rikoon, S.H. (2018). Assessing measurement invariance in multiple-group 

latent profile analysis. Structural Equation Modeling, 25, 439-452. 

doi:10.1080/10705511.2017.1408015 

Petras, H., & Masyn, K. (2010). General growth mixture analysis with antecedents and 

consequences of change. In A.R. Piquero, & D. Weisburd (Eds.), Handbook of 

quantitative criminology (pp. 69-100). New York: Springer.  

Peugh, J. & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: 

A Monte Carlo simulation. Structural Equation Modeling, 20, 616-639. 

doi:10.1080/10705511.2013.824780 

Ram, N., & Grimm, K. (2007). Using simple and complex growth models to articulate 

developmental change: Matching theory to method. International Journal of Behavioral 

Development, 31, 303-316. doi:10.1177/0165025407077751 

Ram, N., & Grimm, K.J. (2009). Growth mixture modeling: A method for identifying 

differences in longitudinal change among unobserved groups. International Journal of 

Behavioral Development, 33, 565-576. doi:10.1177/0165025409343765 

Roe, R.A., Gockel, C., & Meyer, B. (2012). Time and change in teams: Where we are and where 

we are moving. European Journal of Work and Organizational Psychology, 21, 629-

656. doi:10.1080/1359432x.2012.729821 

Schmiege, S.J., Masyn, K.E., & Bryan, A.D. (2018). Confirmatory latent class analysis: 

Illustrations of empirically driven and theoretically driven model constraints. 

Organizational Research Methods, 21, 983-1001. doi:10.1177/1094428117747689 

Shuffler, M.L., Kramer, W.S., Carter, D.R., Thayer, A.L., & Rosen, M.A. (2018). Leveraging 

a team-centric approach to diagnosing multiteam system functioning: The role of 

intrateam state profiles. Human Resource Management Review, 28, 361-377. 

doi:10.1016/j.hrmr.2017.08.003 

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, 

longitudinal, and structural equation models. New York: Chapman & Hall/CRC.  

Solinger, O.N., van Olffen, W., Roe, R.A., & Hofmans, J. (2013). On becoming (un)committed: 

A taxonomy and test of newcomer onboarding scenarios. Organization Science, 24, 

1640-1661. doi:10.1287/orsc.1120.0818 

Sterba, S.K. (2013). Understanding linkages among mixture models. Multivariate Behavioral 

Research, 48, 775-815. doi:10.1080/00273171.2013.827564 

Sterba, S.K. (2014). Fitting nonlinear latent growth curve models with individually-varying 

time points. Structural Equation Modeling, 21, 630-647. 

doi:10.1080/10705511.2014.919828 



Mixture Modeling 27 

Taku, K., & McLarnon, M.J.W. (2018). Posttraumatic growth profiles and their relationships 

with HEXACO personality traits. Personality and Individual Differences, 134, 33-42. 

doi:10.1016/j.paid.2018.05.038 

Tay, L., Newman, D.A., & Vermunt, J.K. (2011). Using mixed-measurement item response 

theory with covariates (MM-IRT-C) to ascertain observed and unobserved measurement 

equivalence. Organizational Research Methods, 14, 147-176. 

doi:10.1177/1094428110366037 

Thorndike, E.L. (1918). Fundamental theorems in judging men. Journal of Applied Psychology, 

2, 67-76. doi:10.1037/h0074876 

Thurstone, L.L. (1919). Mental tests for prospective telegraphers: A study of the diagnostic 

value of mental tests for predicting ability to learn telegraphy. Journal of Applied 

Psychology, 3, 110-117. doi:10.1037/h0071741 

Tofighi, D., & Enders, C.K. (2007). Identifying the correct number of classes in growth mixture 

models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable 

mixture models (pp. 317-341). Charlotte, NC: Information Age. 

Van Horn, M.L., Jaki, T., Masyn, K., Ramey, S.L., Smith, J., & Antaramian, S. (2009). 

Assessing differential effects: Applying regression mixture models to identify variations 

in the influence of family resources on academic achievement. Developmental 

Psychology, 45, 1298-313. doi:10.1037/a0016427 

Vantilborgh, T., Hofmans, J., & Judge, T.A. (2018). The time has come to study dynamics at 

work. Journal of Organizational Behavior, 39, 1045–1049. doi: 10.1002/job.2327) 

Vermunt, J.K. (2010). Latent class modeling with covariates: Two improved three-step 

approaches. Political Analysis, 18, 450-469. doi:10.1093/pan/mpq025 

Vermunt, J.K. (2011). Mixture models for multilevel data sets. In J.J. Hox & J.K. Roberts 

(Eds.), Handbook of advanced multilevel analysis (pp. 59-84). New York: Routledge. 

Vermunt, J.K., & Magidson, J. (2016). Latent Gold 5.1. Belmont, MA; Statistical Innovations.  

Wang, C.-P., Brown, C.H., Bandeen-Roche, K. (2005). Residual diagnostics for growth mixture 

models. Journal of the American Statistical Association, 100, 1054-1076. 

doi:10.1198/016214505000000501 

Wang, M., & Chan, D. (2010). Mixture latent Markov modeling: Identifying and predicting 

unobserved heterogeneity in longitudinal qualitative status change. Organizational 

Research Methods, 14, 411-431. doi:10.1177/1094428109357107 

Wickrama, K.A.S., Lee, T.K., O’Neal, C.W., & Lorenz, F.O. (2016). Higher-order growth 

curves and mixture modeling with Mplus. New York: Routledge. 

Woo, S.E., Jebb, A.T., Tay, L., & Parrigon, S. (2018). Putting the “person” in the center: 

Review and synthesis of person-centered approaches and methods in organizational 

science. Organizational Research Methods, 21, 814-845. 

doi:10.1177/1094428117752467 

Wu, A.D., Zumbo, B.D., & Siegel, L.S. (2011). General piecewise growth mixture model: 

Word recognition development for different learners in different phases. Journal of 

Modern Applied Statistical Methods, 10, 226-248. doi:10.22237/jmasm/1304223600 

Xu, X., & Payne, S.C. (2016). Predicting retention duration from organizational commitment 

profile transitions. Journal of Management, 44, 2142-2168. 

doi:10.1177/0149206316643166 

Zyphur, M.J. (2009). When mindsets collide: Switching analytical mindsets to advance 

organizational science. Academy of Management Review, 34, 677-688. 

doi:10.5465/amr.2009.44885862 

  



Mixture Modeling 28 

  

Figure 1. Latent profile analysis and factor mixture analysis. This general model illustrates k 

latent profiles (C1 to Ck) based on differing configurations of scores on i indicators (X1 to Xi). 

Predictors (Pi) and outcomes (Oi) can be integrated into the model, where the predictors 

influence likelihood of membership into the profiles, and the likelihood of profile 

membership influences the outcomes. In factor mixture analyses, k latent profiles and j factors 

(F1 to Fj; illustrated with dashed factor loadings) are simultaneously estimated from the same 

set of i indicators. 

X1 X2 X3 Xi 

Ck 

…	

Pi Oi 

Fj 

 

 

Figure 2. Mixture regression analysis. This model estimates k latent profiles (C1 to Ck) based 

on differing relations (i.e., regressions) between a set of predictors (P1 to Pi) and outcomes (O1 

to Oi). Predominantly, mixture regression analyses identify subpopulations of cases that 

exhibit differing regression relations, but it can also be combined with latent profile analysis 

to identify profiles that differ on the basis of both relations between indicator variables, and 

the configuration of indicators (see Chénard-Poirier et al., 2017). 

Ck 

P1 - Pi O1 - Oi 
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Figure 3. Latent transition analysis. This model estimates k latent profiles at two separate time 

points (Ckt and Ckt+t), and the probabilities for cases to transition between profiles in Ck and 

Ckt+t over time from repeated measures of the same set of Xi items. Latent transition analyses 

can be used to assess the similarity of a latent profile solution over time. However, the mixture 

model estimated at Time t (i.e., Ck) does not need to be equivalent to the mixture model 

estimated at Time t+1 (i.e., Ckt+1). In other words, it is not required that Ck and Ckt+1 have the 

same number and structure of profiles. 

X11 …	X12 X13 X1i 

Ckt 

X21 …	X22 X23 X2i 

Ckt+1 

Time t Time t+1 

 

Figure 4. Growth mixture analyses. This model estimates Ck latent profiles presenting 

different longitudinal trajectories (i.e., different latent intercepts, αiyk, and slopes, βiyk, 

respectively) on one or more indicator variables measured at t time points. Individual 

trajectories are estimated through a latent growth model, of which any part can be allowed to 

differ across profiles (i.e., means and variances of latent growth factors, factor loadings on the 

slope factors(s) [as in a latent basis model], indicator variances, etc.), hence the dashed line 

around the entire growth model. 
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Table 1. Tests of Profile Similarity 

Test Description 

A – Configural Similarity • Assesses whether same number of profile s are identified in all groups or at each time point.  
• Configural similarity is a prerequisite to all further similarity tests. 
• Lacking configural similarity suggests that the latent profile solutions and require a qualitative comparison process. 

B – Structural Similarity • Assesses whether within-profile levels on the indicators are the same in all groups/time points (i.e., whether profile structure is similar). 
• Configural and structural similarity are prerequisite to all further tests, but partial str uctural similarity is possible.  
• Lack of partial structural similarity: The profiles differ across groups and require a  qualitative comparison process. 
• Prerequisite: Configural similarity. 

C – Dispersional Similarity • Assesses whether levels of within -profile variability are the same in all groups/time points.  Partial dispersion similarity is possible. 
• Lack of dispersion similarity: The inter-individual differences among profile members changes across groups /time points. 
• Not applicable when profile indicators are categorical. 
• Prerequisite: Configural and structural similarity. 

D – Distributional Similarity • Assesses whether the relative size of the profiles (i.e., proportion of sample assigned to each profile) is the same in all groups/ time points. 
• The size of all profiles needs to be either similar or not across pairs of groups/time points, but partial distributional similarity is possible 

across different pairs (e.g., Group 1 and be similar to Group 2, but different than Group 3). 
• Lack of distributional similarity: The size of the profiles differs across groups. 
• Prerequisite: Configural and structural similarity. 

E – Predictive Similarity • Assesses whether the effects of predictors on profile membership are the same in all groups.  
• Predictors are directly included into the most similar model (Models A-D, above). 
• Effects of any one predictor can be similar or not across pairs of profiles, but partial predictive similarity is possible across different pairs 

of groups, or across different predictors. 
• Lack of predictive similarity: The effects of predictors on profile membership differ  across groups. 
• Prerequisite: Configural and structural similarity. 

F – Explanatory Similarity • Assesses whether the effects of profile membership on outcome levels are the same in all groups/time points.  
• Outcomes are directly included into the most similar model (Models A-D, above). 
• Partial explanatory similarity is possible. 
• Lack of explanatory similarity: The effects of profile membership on the outcomes differ  across groups. 
• Prerequisite: Configural and structural similarity. 

G – Regression Similarity • Assesses whether the regressions that define mixture regression profil es are the same in all groups/time points. 
• Only relevant in mixture regression analyses, and is the second step of similarity analyses for mixture regression models.  
• Partial similarity is possible. 
• Lack of partial regression similarity: The latent profiles differ across groups and require a qualitative comparison process . 
• Prerequisite: Configural similarity. 

Recommended order Steps that are a prerequisite to subsequent steps are bolded. 

Latent Profile Analyses: A-B-C-D-E-F 

Mixture Regression Analyses: A-G-B-C-D-E-F 
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Appendix A 

Technical Considerations in the Estimation of Mixture Models 

Mixture Indicators 

Most commonly mixture models are estimated on the basis of either continuous or 

categorical observed data, though other types of data such as count or nominal variables can 

also be used. When categorical data (i.e., binary or polytomous items) is used, the term latent 

class analysis (LCA) is often used to describe the mixture model. In LCA, the distinct 

subpopulations recovered differ on the basis of item response probabilities (e.g., McLarnon, 

DeLongchamp, & Schneider, 2019; Wang & Wang, 2012). Latent profile analysis (LPAs), on 

the other hand, are most often estimated using scale scores on the various indicators of interest 

(i.e., taking the average of the items used to assess a focal construct and using those scores as 

input data; see McLarnon, Carswell, & Schneider, 2015; O’Neill, McLarnon, Hoffart, Woodley, 

& Allen, 2018; O’Neill, McLarnon, Xiu, & Law, 2016; or by using factor scores exported from 

preliminary measurement models, see below). Throughout, we retain use of LPA given that the 

LCA-LPA distinction is somewhat subtle, and that categorical, ordinal, and continuous 

indicator variables can be included in the same mixture model (i.e., as a form of hybrid model; 

see Berlin, Williams, & Parra, 2014; Muthén & Muthén, 2017).  

This supplemental material provides an overview of a number of nuanced issues 

associated with thoroughly conducting LPA, and is structured in the following way: first, we 

highlight the use of factor scores as the input variables for a LPA. Second, we discuss the 

technical issues of random starts in LPA. Third, we present a number of potential guidelines 

that researchers may be able to use to make decisions on model fit (i.e., profile or class 

enumeration). Finally, we provide a number of detailed Mplus syntax templates that researchers 

may be able to leverage to conduct LPAs and its variants. 

Although using observed scale scores as input to a LPA is common, there is an important 

limitation in doing so: scale scores generally have less-than-perfect reliability, and may 

therefore be impacted by measurement error. In contrast, a latent variable (stemming from a 

factor analytic model) naturally controls for measurement error (e.g., Bollen, 1989). 

Unfortunately, applications of fully latent mixture models in which the means of latent factors 

(specified within a confirmatory factor model) vary across profiles are few (see however Morin, 

Scalas, & Marsh, 2015). This can, in part, be explained by the complexity of mixture models, 

which may make fully latent approaches computationally intractable with common computer 

hardware due to nonconvergence or convergence upon improper solutions.  

A strategy that reaches a compromise between these issues is to instead rely on factor 

scores saved from preliminary measurement models (e.g., Kam, Morin, Meyer, & Topolnytsky, 

2015; Morin & Marsh, 2015). Although factors scores do not explicitly control for measurement 

errors with equal efficacy as latent variables, they can provide a partial implicit control for 

measurement errors by giving differentially more weight to the more reliable items (i.e., those 

items with stronger factor loadings). As such, they provide researchers with a reasonable 

alternative to the use of observed scale scores. In addition, factors scores tend to preserve the 

nature of the underlying measurement structure in a superior manner compared to scale scores 

(e.g., can provide methodological controls, account for a bifactor solution or cross-loadings; 

Morin, Boudrias et al., 2016, 2017). Notably, the measurement structure of a multidimensional 

instrument may not be as clear as a set of observed scale scores would reflect. More specifically, 

the simple structure of a multidimensional inventory should be verified prior to using the focal 

variables in a mixture model. This verification may potentially lead to investigating the 

psychometric structure of an inventory with exploratory structural equation modeling and/or 

bifactor exploratory structural equation modeling (Marsh, Morin, Parker, & Kaur, 2014; Marsh, 

Nagengast, & Morin, 2013; McLarnon & Tarraf, 2017; Taku & McLarnon, 2018). Without 

accounting for an inventory’s complex measurement structure, a resulting profile solution may 
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not accurately represent the underlying phenomenon and classification of interest, and may 

therefore have questionable construct validity. A third advantage of factor scores, which might 

tend to be crucially important in cross-cultural and/or longitudinal research, is that preliminary 

measurement models can be used to systematically assess the invariance of a measure across 

groups and/or time points (Millsap, 2011). In these research designs, factor scores can be saved 

from the most invariant measurement model, ensuring comparability across groups and/or time 

points. A final advantage of factors scores comes from their natural standardization, making 

them directly and easily interpretable with a mean of zero and a variance of one. 

Random Starts 

Mixture models are estimated through an iterative process that risks converging on a 

local solution, rather than on a true maximum likelihood, when the number of starting values is 

not sufficient (Hipp & Bauer, 2006). Therefore, best practice is to estimate mixture models 

using many sets of random starting values, and allowing each set of starting values to iterate 

sufficiently (Hipp & Bauer, 2006; McLachlan & Peel, 2000). Despite a general recognition that 

‘the more, the better’ applies to sets of random starting values, increasing the number of random 

starts also increases the computation time for each model under investigation. In practice, our 

recommendation is to use at least 3000 sets of random starting values, allowing up to 100 

iterations for each of these sets, and retaining the 100 best sets of starting values (i.e., those that 

have resulted in the highest loglikelihood estimates) for a final stage of optimizations. The 

Mplus syntax requesting these specifications is given below, as these recommendations 

override the Mplus defaults. These values can be increased to 5000, 200, and 200, respectively, 

when the final solution is not sufficiently replicated. Moreover, we see these values as 

minimums that can be increased as needed. We often use even larger values in our own research 

(e.g., 10000; 1000; 500; respectively). 

For interested readers, Masyn (2013) presented an introduction to maximum likelihood 

estimation and the use of an expectation-maximization algorithm in mixture modeling. 

Class Enumeration 

Alternative profile solutions that extract differing numbers of latent profiles (often 

ranging from one profile to the number of profiles that exceeds theoretical expectations, though 

rarely greater than 10 profiles) are typically contrasted in order to select the final, optimal 

solution. Selection of the optimal model is determined on the basis of considering (a) the 

substantive meaning and theoretical conformity of the solution, (b) the statistical adequacy of 

the solution, and (c) the statistical indicators and model fit indices accompanying each solution.  

Focusing on the statistical indicators of model-data fit: the Akaike Information Criterion 

(AIC), the Consistent AIC (CAIC), the Bayesian information criterion (BIC), and the sample-

adjusted BIC (SABIC) are often reported as components of a comprehensive assessment of a 

profile solution’s fit. Although the CAIC is not currently provided by Mplus, it can be easily 

calculated as BIC + fp, where fp is the number of free parameters. These information criteria 

are considered in terms of ‘lower is better,’ such that lower values indicate a better-fitting 

model. Traditional likelihood ratio tests (LRT) are inappropriate for profile enumeration 

purposes to compare, for instance, the loglikelihood values across models with two versus three 

profiles (LRTs can be appropriate for the comparisons of nested models based on the same 

variables and number of profiles, as in several of the models presented later in this supplemental 

material). For profile enumeration, alternative LRT approximations are available: the Lo, 

Mendel and Rubin (2001) LRT (the standard [LMR] and adjusted version of this test [ALMR], 

which typically yield the same conclusions), and the bootstrapped LRT (BLRT; McLachlan & 

Peel, 2000). These LRT variations compare a k-profile model with a k-1-profile model. BLRT 

p-values > .05 indicate that the k-1 profile model should be retained over a k-profile model (see 

Nylund, Asparouhov, & Muthén, 2007). Finally, although it should not be used for enumeration 

purposes, the entropy estimate associated with each model provides a summary of classification 
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accuracy, with larger values (closer to 1) indicating greater accuracy. 

Multiple simulation studies (for a recent review, see Diallo, Morin, & Lu, 2016) indicate 

that four of these indicators (the CAIC, BIC, ABIC, and BLRT) are particularly effective, while 

less emphasis should be placed on the AIC and LMR/ALMR (Diallo, Morin, & Lu, 2016, 2017; 

Henson et al., 2007; McLachlan & Peel, 2000; Nylund et al., 2007; Peugh & Fan, 2013, 2014; 

Tein, Coxe, & Cham, 2013; Tofighi & Enders, 2008; Tolvanen, 2007; Yang, 2006). When these 

indicators fail to retain the optimal model by indicating which model reaches a minimum on 

the information criteria, the BIC and CAIC tend to underestimate the true number of profiles, 

and the AIC, ABIC, and BLRT tend to overestimate it. The simulation study of Diallo, Morin, 

and Lu (2017) further suggested that the BIC and CAIC should be privileged under conditions 

of high entropy (≥ .80), whereas the ABIC and BLRT perform better in conditions of low 

entropy (≤ .60). However, all of these indicators can also be heavily influenced by sample size 

(Marsh, Lüdtke, Trautwein, & Morin, 2009), which means that with sufficiently large samples, 

they may suggest a need for additional of profiles to reach adequate fit without ever converging 

on a solution that demonstrates the lowest values on these indices. When this happens, it is 

recommended to rely on an “elbow plot” (Morin, Maïano, et al., 2011; Petras & Masyn, 2010). 

These plots illustrate the gains in fit (i.e., decreasing values of the information criteria) related 

to each additional profile. The point after which the slope flattens suggests the optimal number 

of profiles. Examples of using elbow plots to inform judgments of profile enumeration can be 

found in Chen, Morin, Parker, and Marsh (2015), Ciarrochi, Morin, Sahdra, Litalien, and Parker 

(2017), Litalien, Morin, and McInerney (2017), McLarnon and O’Neill (2018), McLarnon et 

al. (2019), and Meyer, Morin, Stanley, and Maltin (2019), among others.   
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Appendix B 

Mplus Syntax for the Estimation of Mixture Models  

In Mplus syntax, annotations can be preceded by an exclamation mark, !, and are not interpreted 

by the program. All Mplus commands are not case sensitive. 

DATA 

The first part of the Mplus syntax identifies the dataset to be used in the analysis. If the dataset 

is in the same folder as the input file (the recommended strategy), only the filename of the 

dataset needs to be indicated. If the dataset is in another folder then the full path needs to be 

specified. Here, the dataset, saved as a comma-separated values file (*.csv; but we also 

frequently use tab-delimited *.dat files) that can be opened and manipulated in Microsoft Excel 

or other standard spreadsheet software, is labeled “filename.csv” and is located in the same 

folder as the Mplus input file (i.e., the *.inp file containing the syntax).  

TITLE: Mixture Modeling in Organizational Behavior Research 

!A title is not a required syntax component, but can be helpful to track files and results 

DATA:  

FILE IS ‘filename.csv’; 

 

VARIABLE 

In the VARIABLE section of the syntax, the NAMES function identifies all variables included 

in the dataset, in order of appearance. USEVARIABLES specifies the variables to be used in 

the analysis. Here, only the variables IND1_T1, IND2_T1, and IND3_T1 are being considered 

as indicators of a latent profile (IND is used as a generic label for “indicator”; 1, 2, and 3 

represents the i set of indicators; and _T1 reflects Time 1 measures). Variable names should be 

restricted to eight characters or less. MISSING defines the values in each variable that denote 

a missing piece of data (typically the same value is used for all variables). Here, any instance 

of “999” would be interpreted by Mplus as a missing value. The IDVARIABLE function 

defines the unique identifier for each case (i.e., participant, employee, team, etc.). CLASSES 

defines the number of latent profiles estimated (here, 3), with the “C” preceding the number in 

parentheses being an arbitrary label assigned to the latent categorical variable that defines the 

latent profiles to be extracted. As noted, most typically, multiple LPAs are conducted, in a 

somewhat exploratory approach, by varying the number of profiles extracted, so in other 

analyses models with 1, 2, 4, 5, etc. profiles would also be specified.  

USEOBSERVATIONS can be used to limit the estimation to a subset of cases. In this 

example, if the ! is removed, the function would limit the estimation to women (identified by 

the Gender variable, which might have the coding of 1 = males; 2 = females) and would exclude 

men and cases with missing gender information. The CLUSTER function can be used to define 

a unique identifier for a clustering variable (i.e., a level-2 variable) to be controlled for or 

accounted for in the analysis (e.g., teams, classrooms, etc.), or to enable multilevel 

specifications. By default, Mplus considers variables as continuous. However Mplus can 

accommodate categorical (binary or polytomous), censored, count, or nominal variables (see 

Muthén & Muthén, 2017). The appropriate variables would just be specified by each of these 

respective commands (and the exclamation point removed) to be incorporated into an analysis. 

Notably, the NOMINAL specification will be used later in this material to illustrate the manual 

implementation of the three-step procedure used to investigate covariate relations. 
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VARIABLE: 

NAMES = ID Gender Team_ID Pred1 Pred2 Cor1 Cor2 Out1 Out2  

IND1_T1 IND2_T1 IND3_T1  

IND1_T2 IND2_T2 IND3_T2;  

USEVARIABLES = IND1_T1 IND2_T1 IND3_T1;  

! CATEGORICAL = ; 

! CENSORED = ; 

! COUNT = ; 

! NOMINAL = ; 

MISSING = all (999); 

IDVARIABLE = ID; 

CLASSES = C(3); 

CLUSTER = Team_ID; 

! USEOBSERVATIONS Gender EQ 2; 

 

ANALYSIS: 

The ANALYSIS section describes the technical specifications of the LPA itself. Here, we 

request the estimation of a mixture model (TYPE = MIXTURE;), which includes a correction 

for the nesting of cases within a higher-level unit (i.e., work team; TYPE = COMPLEX;). 

Further, we request that Mplus uses its robust maximum likelihood estimator (ESTIMATOR = 

MLR;), which provides standard errors that are robust to non-normality, and to non-

independence when used in conjunction with TYPE=COMPLEX; (McNeish, Stapleton, & 

Silverman, 2017; Muthén & Satorra, 1995; Muthén & Muthén, 2017; Mplus uses MLR by 

default for mixture models so it is not necessary to declare this explicitly). STARTS = 3000 

100; requests 3000 initial sets of random start values, with the best 100 of these starts (i.e., those 

that result in the highest loglikelihood values; see below) being retained for a final set of 

optimization iterations. STITERATIONS = 100; requests that all random starts be allowed a 

maximum of 100 iterations. PROCESS = 3; requests that 3 of the available processors in the 

local computer be used to speed up the estimation (i.e., 1/3 of the random starts will be allocated 

to each processor to distribute the model estimation and complete it in parallel). 

 

ANALYSIS: 

TYPE = MIXTURE COMPLEX;  

ESTIMATOR = MLR;  

PROCESS = 3;  

STARTS = 3000 100;  

STITERATIONS = 100; 

 

As part of the output, Mplus provides the loglikelihood values associated with each of the 

random starting value runs that were retained for the final stage of optimization iterations and 

reached convergence. The output will also indicate how many of the start value runs did not 

converge (i.e., the “perturbed” values, in this example there are 15 [of 100] that did not reach 

convergence). The first number in this list gives the loglikelihood value (-6095.887), the second 

number (991399) is the random seed value that resulted in this loglikelihood, and the third 

number (1433) is the ordering within the 3000 random starting value sets that resulted in this 

random seed and associated loglikelihood. 
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RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST 

LOGLIKELIHOOD VALUES 

15 perturbed starting value run(s) did not converge. 

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers: 

           -6095.887  991399           1433 

           -6095.887  165268           2436 

           -6095.887  551639           55 

           -6095.887  58353            1723 

           -6095.887  168648           1788 

           -6095.887  445692           2796 

           -6095.887  973369           202 

           -6095.887  623887           2611 

           -6096.828  163110           584 

           -6096.828  762461           425 

           -6096.828  62715            2599 

           -6104.647  264951           1130 

           -6104.647  930872           277 

           -6104.647  670998           1876 

           -6104.698  98068            998 

           -6105.491  361131           2563 

… 

 

In this example, the best loglikelihood value was replicated eight times (in bold; the number of 

times the value of -6095.887 appears in the first column), which is satisfactory. Although no 

clear-cut rule exists, we suggest that solutions should be replicated at least three times. 

Otherwise, the results may not be robust, and these loglikelihood values could reflect a local 

solution, rather than a global optimum. Should a model fail to sufficiently replicate the best 

loglikelihood, additional tests should be conducted with an increased number of random starting 

value sets and/or iterations (e.g., STARTS = 10000 1000; STITERATIONS = 1000;), or by 

using user-defined start values. Alternatively, the values from the best fitting, non-replicated 

solution, which are provided when SVALUES is requested in the OUTPUT section of the 

syntax (see below) can be copied into the MODEL portion of the syntax while keeping the 

random starts function active (we provide an example below). As noted, the second column 

provides the random seed associated with each random starting value set. Using the seed 

number can provide an easy way to replicate the final solution (or any other solution) while 

decreasing computational time (i.e., the same loglikelihood value and parameter estimates will 

result). To use this procedure, the following ANALYSIS section has been adapted to replicate 

the above solution by inputting the seed number into the OPTSEED command. The usage of 

the OPTSEED however will not ensure that the solution is replicated if additional variables 

(i.e., covariates, predictors, or outcomes) are directly incorporated into the model. We address 

this issue in greater detail below. 

ANALYSIS: 

TYPE = MIXTURE COMPLEX;  

ESTIMATOR = MLR; 

PROCESS = 3;  

STARTS = 0;  

OPTSEED = 991399;  

STITERATIONS = 100; 
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MODEL  

The MODEL section of the syntax describes the specific structure of the mixture model to be 

estimated. We provide code, in sequence, for each of the models described in the chapter. 

 

OUTPUT 

This section of the syntax covers specific output provided by Mplus. Here, we request 

standardized model parameters (STDYX), sample statistics (SAMPSTAT), confidence 

intervals (CINTERVAL), the final estimates provided by the model that could be used as 

starting values for a subsequent analyses (SVALUES), the model residuals (RESIDUAL), the 

arrays of parameters (TECH1), the profile-specific descriptives (TECH7), the LMR and ALMR 

tests (TECH11), and the BLRT (TECH14). Since the BLRT can be computationally intensive, 

users may wish to omit it from an initial set of analyses, and then revisit each solution following 

the procedure outlined by Asparouhov and Muthén (2012) to save time with complex models. 

 

OUTPUT: 

STDYX SAMPSTAT CINTERVAL SVALUES RESIDUAL TECH1 TECH7 TECH11 

TECH14; 
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Latent Profile Analysis 

The MODEL section includes an %OVERALL% portion that describes the global relations 

estimated among the variables that will apply to each profile. Profile-specific statements, 

%C#1%, %C#2%, and %C#3% (where C is the arbitrary label used to define the latent 

categorical variable from the CLASSES command of the VARIABLE section, and the number 

[1 to k] refers to the specific nominal category of this variable [i.e., the specific profile]). Here, 

as no commands are presented directly beneath the %OVERALL% section, no relations 

between variables will be constrained to equality across profiles (though see later examples and 

Pastor, Barron, Miller, & Davis, 2007). As noted, throughout our examples, three profiles are 

estimated from three indicators taken at the first time point (IND1_T1, IND2_T1, and 

IND3_T1). The profile specific sections request that the means (indicated by the name of the 

variable within square brackets [ ]) and variances (defined by the names only) of the indicators 

be freely estimated in all profiles. 

 

MODEL: 

%OVERALL% 

 

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

 

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

 

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

 

 

Profiles can also be estimated with the variances of respective indicators held equal across 

profiles by removing, or deactivating with !, the profile-specific references of each variable’s 

variance: 

MODEL: 

%OVERALL% 

 

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];  

 

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];  

 

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];  
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In Mplus, correlations are identified using a WITH command, so should a researcher wish to 

allow correlated uniquenesses among profile indicators, where the correlations are constrained 

to equality across profiles, the following could be added to the %OVERALL% section of the 

syntax. However, we generally would not recommend this strategy, and would encourage 

researchers to use this approach with caution and only with a strong theoretical rationale, 

given the well-known issues associated with correlated uniquenesses, which are known to 

drastically change the meaning of the estimated latent variables (here the profiles; see Landis, 

Edwards, & Cortina, 2009). 

 

MODEL: 

%OVERALL% 

IND1_T1 WITH IND2_T1 IND3_T1;  

IND2_T1 WITH IND3_T1;  

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1;  

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1;  

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1; 

 

To estimate a model with correlated uniquenesses among all profile indicators, which are freely 

estimated in all profiles rather than constrained to equality, the following commands can be 

adapted. As above, we would not generally recommend this strategy. 

 

MODEL: 

%OVERALL% 

IND1_T1 WITH IND2_T1 IND3_T1;  

IND2_T1 WITH IND3_T1;  

! Note, even though the general commands appear here,  

! they are ‘over-ridden’ with the profile-specific commands below 

 

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1;  

IND1_T1 WITH IND2_T1 IND3_T1;  

IND2_T1 WITH IND3_T1;  

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1;  

IND1_T1 WITH IND2_T1 IND3_T1;  

IND2_T1 WITH IND3_T1;  

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];   

IND1_T1 IND2_T1 IND3_T1; 

IND1_T1 WITH IND2_T1 IND3_T1;  

IND2_T1 WITH IND3_T1;  
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When SVALUES are requested in the output, Mplus will provide a section, similar to the 

following. This section can be copy-and-pasted and used as a replacement for the MODEL 

section. In conjunction with setting the STARTS command to 0 (STARTS = 0) the final solution 

will be replicated without the computational requirements of the random starts. This function 

may be particularly useful when including covariates, and may minimize the occurrence of 

changes in a LPA following the inclusion of covariates to the model. However, if there is 

substantial change (e.g., proportions of cases assigned to each profile, means of indicators in 

each profile) between a final unconditional model and a conditional model with covariates, the 

researcher should use one of the procedures described below (i.e., the three-step, DCAT, or 

BCH approaches; see McLarnon & O’Neill, 2018). Below, we provide an overview of 

McLarnon and O’Neill’s (2018) manual approach that can be implemented to incorporate 

auxiliary variables when a shift in a profile solution has occurred following the implementation 

of direct inclusion approaches. 

 

MODEL: ! COMMANDS WITH FINAL ESTIMATES USED AS STARTING VALUES 

%OVERALL% 

 [ C#1*-0.93515 ]; 

 [ C#2*0.49113 ]; 

      

%C#1% 

[IND1_T1*-1.59367 ];  

[IND2_T1*-0.93155 ];  

[IND3_T1*0.39664 ]; 

IND1_T1*0.53789; 

IND2_T1*2.12542; 

IND3_T1*1.59137; 

      

%C#2% 

[IND1_T1*-0.18248 ];  

[IND2_T1*-0.29812 ];  

[IND3_T1*-0.15201 ]; 

IND1_T1*0.42376; 

IND2_T1*0.43116;      

IND3_T1*0.72513; 

 

%C#3% 

[IND1_T1*0.94111 ]; 

[IND2_T1*0.86526 ]; 

[IND3_T1*0.08333 ]; 

IND1_T1*0.44053; 

IND2_T1*0.48030; 

IND3_T1*1.13489; 
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Latent Profile Analysis with Covariates 

Predictors 

Direct inclusion of predictors into the model is done by way of multinomial logistic regressions 

where the predictors are specified as having an impact on profile membership (i.e., C#1-C#2 

ON Pred1 Pred2;), where one fewer C# statement than the total number of profiles is necessary 

in the %OVERALL% section. The C# portions of the command reflect the multinomial 

probability of membership in the various categories of the latent profile variable, which 

represent the relative size of each profile and the proportion of the sample assigned to each 

profile. 

MODEL: 

%OVERALL% 

C#1-C#2 ON Pred1 Pred2; 

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];  

IND1_T1 IND2_T1 IND3_T1;  

To enhance the probability that the nature of the profiles will remain unchanged by the inclusion 

of predictors, the SVALUES from the final solution can be used (as noted previously), and the 

random starts function should be deactivated (STARTS = 0;). If this is not sufficient to prevent 

shifts in the model parameters, the class specific parameters (i.e., variable means and variances 

within the %C#1% to %C#3% profile-specific sections) can be fixed (using @ rather than *; 

see alternative codes below; see also Bakk & Kuha, 2018; Janssen, van Laar, de Rooij, Kuha, 

& Bakk, in press). The start values in the %OVERAL% section to describe that the class 

probabilities should not be fixed (i.e., leave these with an asterisk; [C#1*-0.93515 ];), as the 

inclusion of predictors changes the meaning of these parameter from reflecting class 

probabilities to reflecting the multinomial intercepts of these class probabilities as predicted by 

the covariates.  

 

%OVERALL% 

[C#1*-0.93515 ]; [C#2*0.49113 ]; 

C#1-C#2 ON Pred1 Pred2; 

%C#1% 

[ IND1_T1*-1.59367 ]; ! Alternatively: [ IND1_T1@-1.59367 ]; 

[ IND2_T1*-0.93155 ]; ! Alternatively: [ IND2_T1@-0.93155 ]; 

[ IND3_T1*0.39664 ];  ! Alternatively: [ IND3_T1@0.39664 ]; 

IND1_T1*0.53789; 

IND2_T1*2.12542;   

IND3_T1*1.59137;   

%C#2% 

[IND1_T1*-0.18248 ]; 

IND2_T1*-0.29812 ];  

[IND3_T1*-0.15201 ];  

IND1_T1*0.42376; 

IND2_T1*0.43116;  

IND3_T1*0.72513;  
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%C#3% 

[IND1_T1*0.94111 ]; 

[IND2_T1*0.86526 ];  

[IND3_T1*0.08333 ];  

IND1_T1*0.44053; 

IND2_T1*0.48030;  

IND3_T1*1.13489;  

 

In contrast to the previous approach in which predictors are directly included into the model, 

Mplus also includes a number of approaches that facilitate examining predictor, covariate, and 

outcome relations while maintaining these variables as external, or auxiliary, to the focal 

mixture model. Advantageously, these approaches preserve the construct validity of an 

unconditional profile solution by reducing the likelihood of a shift in the structure and definition 

of a profile. In particular, with the direct inclusion approach offered in the previous syntax, 

there is a potential for confounding in the meaning and nature of the latent profiles because 

covariates can directly contribute information into the estimation of the mixture model. This 

means that the profiles could come to reflect the heterogeneity not only in the focal profile 

indicators but also in the covariates, potentially raising concerns over the nature of the construct 

assessed by the profiles. Accordingly, direct inclusion raises the possibility that a latent profile 

“could lose its meaning” (Asparouhov & Muthén, 2014, p. 329). To provide an alternative to 

the direct inclusion approach when it results in substantial shifts in the nature of an optimal 

unconditional profile solution, Mplus includes a number of auxiliary procedures for examining 

relations between a latent profile and covariates without allowing them to influence the nature 

of the profiles. In these contexts, covariates are referred to as auxiliary variables. The manual 

implementation of these procedures forms the basis of McLarnon and O’Neill’s (2018) 

framework for examining auxiliary covariate relations (which is based on Asparouhov & 

Muthen, 2014, 2015; Nylund-Gibson, Grimm, Quirk, & Furlong, 2014). 

 

Among the available AUXILIARY approaches automated in Mplus, the R3STEP procedure 

(see Asparouhov & Muthén, 2014; Vermunt, 2010) is currently optimal for examining predictor 

relations. This approach is similar to the multinomial logistic regressions described above, but 

explicitly tests, through an automated procedure, whether including the predictors result in a 

change in the nature of the profiles. When this occurs (and the previous direct inclusion 

approaches do not work), then predictors should be treated as correlates (see below). To use 

R3STEP, the following line of code needs to be included to the VARIABLE section (in bold). 

The MODEL section remains unchanged (which can be specified with or without starting 

values). 

 

VARIABLE: 

NAMES = ID Gender Team_ID Pred1 Pred2 Cor1 Cor2 Out1 Out2  

IND1_T1 IND2_T1 IND3_T1  

IND1_T2 IND2_T2 IND3_T2; 

USEVARIABLES = IND1_T1 IND2_T1 IND3_T1;  

MISSING = all (999); 

IDVARIABLE = ID; 

CLASSES = C(3); 

AUXILIARY = Pred1 (R3STEP) Pred2 (R3STEP); 
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Outcomes 

The direct inclusion of outcomes involves adding them as additional mixture indicators, 

preferably while using the SVALUES from the final solution to provide a measure of stability 

in the nature of the profiles. Parameter labels are given to the means of the outcome variables 

in each profile (in parentheses), and these labels can subsequently be used within a MODEL 

CONSTRAINT command to provide tests of significant differences (based on the delta method; 

Raykov & Marcoulides, 2004) of the outcome means between profiles. A MODEL TEST 

command can also be enabled to provide a Wald χ2 test, as is provided by the automated three-

step and BCH functions. 

%OVERALL% 

[C#1*-0.93515 ]; [C#2*0.49113 ]; 

%C#1% 

[IND1_T1*-1.59367 ]; [IND2_T1*-0.93155 ]; [IND3_T1*0.39664 ];  

IND1_T1*0.53789; IND2_T1*2.12542; IND3_T1*1.59137;  

[Out1] (oa1); [Out2] (ob1); 

Out1; Out 2; 

%C#2% 

[IND1_T1*-0.18248 ]; [IND2_T1*-0.29812 ]; [IND3_T1*-0.15201 ];  

IND1_T1*0.42376; IND2_T1*0.43116; IND3_T1*0.72513;  

[Out1] (oa2); [Out2] (ob2); 

Out1; Out 2; 

%C#3% 

[IND1_T1*0.94111 ]; [IND2_T1*0.86526 ]; [IND3_T1*0.08333 ];  

IND1_T1*0.44053; IND2_T1*0.48030; IND3_T1*1.13489;  

[Out1] (oa3); Out2] (ob3); 

Out1; Out 2; 

MODEL CONSTRAINT: 

! New parameters are created using this function to reflect pairwise mean differences between 

! profiles (e.g., y12 reflects the differences between the Out1 means in profiles 1 and 2)  
NEW (y12); 

y12 = oa1-oa2; 

NEW (y13); 

y13 = oa1-oa3; 

NEW (y23); 

y23 = oa2-oa3; 

NEW (z12); 

z12 = ob1-ob2; 

NEW (z13); 

z13 = ob1-ob3; 

NEW (z23); 

z23 = ob2-ob3; 

MODEL TEST: 

!A MODEL TEST provides an omnibus test of the specified null hypothesis  

!(i.e., means in each profile are equivalent), so may only be meaningful if conducted  

!once for each outcome. Thus, in a second run, the ! would be removed for the ob1-ob3 

!labels, but then added to the oa1-oa3 labels. So that two, separate, Wald chi-square tests 

! with 2 degrees of freedom are estimated. 

oa1 = oa2; 

oa2 = oa3; 

!ob1 = ob2; 

!ob2 = ob3; 
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Several AUXILIARY approaches (see Asparouhov & Muthén, 2014) are also available for 

outcome relations, which may be particularly useful when direct inclusion results in shifting 

profile parameters. The first is similar to the R3STEP approach and includes an assessment of 

the degree to which continuous outcomes change the nature of the profile solution. This 

approach can either allow the variances of the outcomes to be freely estimated across profiles 

(DU3STEP) or held equal across profiles (DE3STEP). A more recent alternative (BCH) has 

been shown to outperform these approaches, and ensures the stability of the profile solutions 

(Bakk & Vermunt, 2016). Finally, an alternative approach that has been shown to be 

advantageous in some situations can accommodate continuous (DCON) and categorical 

(DCAT) outcomes (Asparouhov & Muthén, 2015; Lanza, Tan, & Bray, 2013). As noted in the 

chapter, our current recommendations are to use the R3STEP procedure for predictors, the 

DCAT procedure for binary, categorical, and nominal outcomes, and the DU3STEP (the 

homogeneity of variance assumption underlying DE3STEP may not be realistic in many 

situations), DCON, or BCH functions for continuous outcomes (see Asparouhov & Muthén, 

2014, 2015; Muthén & Muthén, 2017). 

 

! Pick between these alternatives depending on nature of outcome variable:  

AUXILIARY = Out1 (DU3STEP) Out2 (DU3STEP); 

AUXILIARY = Out1 (DE3STEP) Out2 (DE3STEP); 

AUXILIARY = Out1 (BCH) Out2 (BCH); 

AUXILIARY = Out1 (DCON) Out2 (DCON); 

AUXILIARY = Out1 (DCAT) Out2 (DCAT); 

 

 

Correlates 

Correlates can be incorporated to the model via the AUXILIARY (E) command, which does 

not assume directionality in the associations between profiles and covariates, and is thus well 

suited to correlates. We note however, that statistical research has shown this approach to be 

clearly suboptimal when considering outcome variables, for which it has been superseded by 

the BCH, DCON, DCAT, and DU3STEP/DE3STEP approaches (Asparouhov & Muthén, 

2015). For this reason, and pending additional evidence, we urge caution with its use and 

suggest that researchers using the E command may want to verify the extent to which these 

results replicate when using the 3STEP, DCAT, DCON, or BCH methods, as appropriate. 

 

AUXILIARY = Cor1 (E) Cor2 (E); 

 

  



Supplements for Mixture Modeling   S20 

Procedure for the Manual Implementation of Auxiliary Approaches 

As noted in the chapter, it is important to ensure that covariate inclusion does not result in the 

modification of the nature of the most optimal unconditional solution given that such a change 

would violate the theoretically driven assumption of the directionality of the associations 

between the covariates and the profiles (Marsh et al., 2009, Morin, Morizot et al., 2011). The 

various auxiliary approaches presented earlier were all developed to circumvent this problem 

when it happens in the context of the direct inclusion approach. However, not all of the 

automated auxiliary approaches are immune to this problem (i.e., the 3step approaches remain 

sensitive to this issue), and none of them can be extended to tests of complex relations between 

profiles and covariates (e.g., mediation, moderation). To address this issue, particularly when 

bringing a latent profile into a larger statistical model with multiple auxiliary variables, where, 

for example, the profile is considered as a moderator of an X → Y relation, or when the profile 

variable is considered a mediator, or when the conditional effects on an outcome (i.e., mean 

differences after accounting for a control variable) are of interest, McLarnon and O’Neill (2018) 

proposed leveraging the manual implementation of the three-step and BCH procedures (see also 

Morin & Litalien, 2017). McLarnon and O’Neill (2018) noted that preference could be placed 

on the BCH approach, but suggested that users could compare results from both approaches as 

an index of robustness. Implementing both the three-step and BCH approaches involve three 

analytical stages. We first outline the procedure of the BCH approach. 

BCH Approach 

First, in the final/optimal unconditional model a series of new variables that contain the 

classification information is requested within the SAVEDATA command. 

!Commands for BCH approach 

SAVEDATA:  

FILE IS Output_BCH.dat; 

SAVE IS BCHWEIGHTS; 

 

Second, the new variables that were saved in the “Output_BCH.dat” file, and reflect 

classification probabilities for each case, are then incorporated into the main dataset: 

DATA:  

FILE IS filename2.csv; 

VARIABLE: 

NAMES = ID Gender Team_ID Pred1 Pred2 Cor1 Cor2 Out1 Out2  

IND1_T1 IND2_T1 IND3_T1  

IND1_T2 IND2_T2 IND3_T2 

BCHw1 BCHw2 BCHw3;  

!Where the above BCH variables reflect the BCH weights for each case 

 

USEVARIABLES = Out1 Pred1 BCHw1 BCHw2 BCHw3;  

TRAINING ARE BCHw1 BCHw2 BCHw3 (BCH); 

! These BCH weights are then incorporated using a special command declaring 

! each weight as a TRAINING variable. 

! Note. Mplus will not run an empty model with only the BCH variables in the TRAINING  

! command, so to ensure that classification proportions with the BCH variables are correct as  

! compared to Step 1 at least one other variable must be declared in USEVARIABLE 

 

MISSING = all (999); 

IDVARIABLE = ID; 

CLASSES = C(3); 
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Third, the auxiliary model is specified. Here, we limit our demonstration to a straightforward 

example of the profiles moderating the relation between Pred1 and Out1. Readers can consult 

McLarnon & O’Neill (2018) for further details about the mediation and conditional effect 

parameterization. 

 

MODEL: 

%OVERALL% 

Out1 ON Pred1;  

 

%C#1% 

[Out1] (m1_1);  

Out1; 

Out1 ON Pred1 (reg1);  

%C#2% 

[Out1] (m1_2);  

Out1; 

Out1 ON Pred1 (reg2);  

%C#3% 

[Out1] (m1_3);  

Out1; 

Out1 ON Pred1 (reg3);  

 

MODEL TEST:  

reg1 = reg2;  

reg2 = reg3; 

! Facilitates an omnibus chi-square test for the equivalence of regressions of Out1 on Pred1 

! across profiles; analogous to F-change from typical moderated multiple regression 

 

MODEL CONSTRAINT: 

NEW(mod1_2 mod1_3 mod2_3); 

mod1_2 = reg1- reg2; 

mod1_3 = reg1- reg3; 

mod2_3 = reg2- reg3; 

! These constraints now compute pairwise comparisons of each profile’s regression 

coefficients 

 

 

Three-Step Approach 

The first step of the three-step procedure utilizes a different SAVEDATA command from the 

final/optimal unconditional model.  

!Commands for 3STEP approach 

SAVEDATA:  

FILE IS Output_VAM.dat; 

SAVE IS CPROB; 

 

The CPROB command associated with the three-step’s SAVEDATA syntax saves the 

classification probabilities (which aren’t used in the secondary analysis), and the modal 

profile variable, which reflects most likely profile membership for each participant and is 

used in subsequent analyses. 
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DATA:  

FILE IS filename3.csv; 

VARIABLE: 

NAMES = ID Gender Team_ID Pred1 Pred2 Cor1 Cor2 Out1 Out2  

IND1_T1 IND2_T1 IND3_T1  

IND1_T2 IND2_T2 IND3_T2 

CPROB1 CPROB2 CPROB3 MODAL;  

! Where the CPROB variables reflect the membership probabilities of each case in each 

profile 

USEVARIABLES = MODAL;  

NOMINAL = MODAL; 

MISSING = all (999); 

IDVARIABLE = ID; 

CLASSES = C(3); 

CLUSTER = Team_ID; 

! In the MODEL command, the thresholds for nominal modal profile variable, MODAL, are  

! then declared and fixed to values that account for membership uncertainty. These values  

! are made available by Mplus from the Step 1 analyses (i.e., the final/optimal unconditional  

! model), under a section of the output called: “Logits for the Classification Probabilities for  

! the Most Likely Latent Class Membership (Column) by Latent Class (Row)” 

! These values will differ across any different model from Step 1 and must be adjusted in this  

! second step. This model with only MODAL in the USEVARIABLE statement can be run to  

! check that profile membership is equal to the model from Step 1. 

MODEL: 

%OVERALL%  

%C#1%  

[MODAL#1@0.994];  

[MODAL#2@-1.581];  

%C#2%  

[MODAL#1@-2.575];  

[MODAL#2@1.953];  

%C#3%  

[MODAL#1@-1.816];  

[MODAL#2@-1.669];  
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Third, the auxiliary model is specified under the MODEL command. For sake of brevity, we 

re-illustrate the syntax from the BCH method where the profiles moderate the relation 

between Pred1 and Out1 (see McLarnon & O’Neill, 2018 for other modeling possibilities). 

See our description of the BCH procedure for an explanation of the MODEL TEST and 

MODEL CONSTRAINT commands. 

MODEL: 

%OVERALL% 

Out1 ON Pred1;  

%C#1% 

[MODAL#1@0.994];  

[MODAL#2@-1.581];  

[Out1] (m1_1); Out1; 

Out1 ON Pred1 (reg1);  

%C#2% 

[MODAL#1@-2.575];  

[MODAL#2@1.953];  

[Out1] (m1_2); Out1; 

Out1 ON Pred1 (reg2);  

%C#3% 

[MODAL#1@-1.816];  

[MODAL#2@-1.669];  

[Out1] (m1_3); Out1; 

Out1 ON Pred1 (reg3);  

MODEL TEST:  

reg1 = reg2;  

reg2 = reg3; 

MODEL CONSTRAINT: 

NEW(mod1_2 mod1_3 mod2_3); 

mod1_2 = reg1- reg2; 

mod1_3 = reg1- reg3; 

mod2_3 = reg2- reg3; 
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Factor Mixture Analysis 

Presented next is the input for the factor mixture analyses that can be used as a way to control 

for a global factor that is shared among the indicators (e.g., global levels of life satisfaction; 

Morin et al., 2017; global interest in general vocational activities; McLarnon et al., 2015). 

Factor mixture analyses may facilitate estimating clearer latent profiles that are distinguished 

by shape and present different configurations, rather than profiles differentiated merely on the 

basis of different levels (see Morin & Marsh, 2015). The only difference with the previous LPA 

models is the introduction of a common factor model in the %OVERALL% section. This factor 

model is specified as invariant across profiles. This common factor is labeled G, and is defined 

by the same indicators that are used to estimate the latent profiles. In Mplus, BY defines factor 

loadings, and denotes use of IND1_T1, IND2_T1, and IND3_T1 as indicators of the factor, G. 

All loadings on this factor are freely estimated (the * associated with the first indicator overrides 

the default of constraining the loading of the first indicator to be 1.00, as in the referent indicator 

approach to identifying a factor model). Therefore, for identification purposes the factor 

variance is fixed to 1.00 (the @ is used to fix a parameter to a specific value). Because the 

intercepts of the indicators of this factor will be freely estimated across profiles, the factor mean 

must also be fixed to 0 in each profile for identification purposes. 

MODEL: 

%OVERALL% 

G BY IND1_T1* IND2_T1 IND3_T1;  

G@1; 

[G@0]; 

 

%C#1% 

[IND1_T1 IND2_T1 IND3_T1];  IND1_T1 IND2_T1 IND3_T1;  

%C#2% 

[IND1_T1 IND2_T1 IND3_T1];  IND1_T1 IND2_T1 IND3_T1;  

%C#3% 

[IND1_T1 IND2_T1 IND3_T1];  IND1_T1 IND2_T1 IND3_T1;  
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Multiple-Group Latent Profile Analyses: Configural Similarity 

Returning to the VARIABLE section of the Mplus syntax, to conduct analyses on the similarity 

of profile solutions estimated independently in separate groups, the multiple group option needs 

to be activated, and defined using the KNOWNCLASS function. This uses a label (here, we 

use CG) to define this new grouping variable (in some variable-centered analyses, the multiple 

group commands are activated using the GROUPING command, but it is different for mixture 

models). In our example, we use two subgroups referring to men and women. However, more 

than two groups can be used for any relevant subsample (e.g., cultural groups). As noted, the 

levels of this grouping variable are defined as: (a) including participants with a value of 1 (men) 

on the variable Gender, and (b) including participants with a value of 2 (women) on the variable 

Gender (any other cases missing data on Gender or with an alternative code will be omitted). 

There are now two grouping variables, C, the latent profiles, estimated as part of the LPA 

procedure, which have k levels (here, we are still working with a 3-profile solution), and CG, 

which reflects the observed subgroups (Gender) with 2 levels. Participants are allowed to be 

cross-classified. 

VARIABLE: 

KNOWNCLASS = CG(Gender = 1 Gender = 2);  

CLASSES = CG(2) C(3); 

 

The %OVERALL% section is then used to indicate that the class sizes (i.e., proportions of cases 

most likely associated to each profile) are freely estimated in all observed CG groups using the 

ON function, indicating that profile membership is conditional on gender. In Mplus, ON defines 

regressions (which are read as ‘outcome regressed on predictor’). Once again, k-1 statements 

are required (i.e., two multinomial intercepts of C are needed for a three-profile model). Profile-

specific statements are then defined using combination labels of the known classes, CG, and 

the estimated classes, C. The ordering of the combined labels must reflect the ordering given in 

the CLASSES command of the VARIABLE section. For instance, if CG was listed first, it must 

occupy the first component of the label defined within the % signs. Similar labels in parentheses 

identify parameters that are constrained to equality across the CG groups. Here, none of the 

labels are shared between groups, so that the means and variances are freely estimated in all 

combinations of profiles across gender groups. Lists of constraints (m1-m3) apply to the 

parameters in order of appearance (m1 applies to IND1_T1, m2 to IND2_T1, m3 to IND3_T1). 

 

Importantly, the syntax presented here already assumes configural similarity. More precisely, 

this syntax provides an example of how researchers can integrate a profile solution based only 

on men’s responses with a profile solution based only on women’s responses after confirming 

that both solutions include the same number of latent profiles. This syntax and framework sets 

the stage for further tests of similarity (i.e., structural, dispersion) by adjusting the parameter 

labels given in parentheses. To determine if configural similarity is supported, researchers must 

conduct the profile enumeration procedure separately in each independent group to ensure that 

the optimal profile solution (i.e., with same number of profiles) is the same across groups. 

Configural similarity is the benchmark comparison model for the structural and other more 

restricted models (see Morin et al., 2016 for further details). 
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%OVERALL% 

C#1 ON CG#1;  

C#2 ON CG#1; 

 

%CG#1.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#1.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#1.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

%CG#2.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (mm1-mm3);  

IND1_T1 IND2_T1 IND3_T1 (vv1-vv3);  

 

%CG#2.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (mm4-mm6);  

IND1_T1 IND2_T1 IND3_T1 (vv4-vv6);  

 

%CG#2.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (mm7-mm9);  

IND1_T1 IND2_T1 IND3_T1 (vv7-vv9);  
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Multiple-Group Latent Profile Analyses: Structural Similarity 

The only difference between this model and the configural similarity model is that respective 

means, within respective profiles, are constrained to equality across gender groups using 

identical labels in parentheses. Labels in bold are those that were modified from the configural 

similarity model. 

 

To support structural similarity, researchers should compare the information criteria (AIC, 

CAIC, BIC, and ABIC) from the structural model to those furnished by the configural model. 

As these indices are presented in ‘lower is better’ form, the model with the lowest estimates 

provides a better fit and should be retained. However, as these indices are not always in 

agreement, Morin et al. (2016) suggested that so long at least two of the AIC, CAIC, BIC or 

ABIC demonstrate the same or decreased value in a more restricted model (i.e., structural 

similarity vs. configural similarity) then the more restricted model can be supported. While we 

endorse this recommendation, we note that fit across profile similarity models is still an area of 

ongoing research for which best practice recommendations are likely to change. Additionally, 

a traditional likelihood ratio test can be computed using -2 × (loglikelihood value from 

structural similarity model – loglikelihood from configural similarity model), which is 

distributed as χ2, with degrees of freedom equal to the difference in the number of free 

parameters estimated between configural and structural similarity models (see Eid, Langeheine, 

& Diener, 2003; Geiser, Lehmann, & Eid, 2006; Kankaraš, Moors, & Vermunt, 2011). 

However, these tests suffer the same limitations as traditional chi-square difference tests (i.e., 

over sensitivity to sample size and minor model misspecifications, etc.; Marsh, Hau, & 

Grayson, 2005) and are thus not recommended.  

%OVERALL% 

C#1 ON CG#1; 

C#2 ON CG#1; 

 

%CG#1.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#1.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#1.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

%CG#2.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (vv1-vv3);  

 

%CG#2.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (vv4-vv6);  

 

%CG#2.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (vv7-vv9);  
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Multiple-Group Latent Profile Analyses: Dispersion Similarity 

The only difference between this model and the structural similarity model is that respective 

variances are now constrained to equality across gender groups within respective profiles using 

identical labels in parentheses. Labels in bold are those that were modified from the structural 

similarity model. 

%OVERALL% 

C#1 ON CG#1; 

C#2 ON CG#1; 

 

%CG#1.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#1.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#1.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

%CG#2.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#2.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#2.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9); 
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Multiple-Group Latent Profile Analyses: Distribution Similarity 

The only difference between this model and the dispersion similarity model is that the 

commands directly beneath the %OVERALL% section have been deactivated (or could be 

omitted entirely) to reflect the fact that the sizes of the profiles are no longer conditional on 

gender (or CG group membership).  

%OVERALL% 

! C#1 ON CG#1; 

! C#2 ON CG#1; 

 

%CG#1.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#1.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#1.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

%CG#2.C#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%CG#2.C#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%CG#2.C#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9); 
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Multiple-Group Latent Profile Analyses with Predictors: Relations Freely Estimated Across 

Subgroups 

This model uses the SVALUES associated with the most similar model retained from the previous 

sequence (here we start from a model of distributional similarity), specified with * followed by the value 

of the estimated parameters. To this model, the effects of predictors on profile membership can be 

incorporated (C#1-C#2 ON Pred1 Pred2;). To allow these effects to be freely estimated across gender, 

they need to be constrained and fixed to 0 in the %OVERALL% section, and then freely estimated in 

both gender groups in a new section of the input that specifically refers to CG. See all sections in bold. 

%OVERALL% 

[ CG#1*-0.00217 ]; [ C#1*-0.93515 ]; [ C#2*0.49113 ]; 

C#1-C#2 ON Pred1@0 Pred2@0; 

%CG#1.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2);  

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 

IND2_T1*2.12542 (v2);   

IND3_T1*1.59137 (v3); 

%CG#1.C#2% 

[IND1_T1*-0.18248 ] (m4); 

[IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6); 

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6);  

%CG#1.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9);  

%CG#2.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2); 

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 

IND2_T1*2.12542 (v2); 

IND3_T1*1.59137 (v3);  

%CG#2.C#2% 

[IND1_T1*-0.18248 ] (m4); 

IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6);  

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6);  

%CG#2.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9);  

MODEL CG: 

%CG#1% 

C#1-C#2 ON Pred1 Pred2; 

%CG#2% 

C#1-C#2 ON Pred1 Pred2; 
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Multiple-Group Latent Profile Analyses with Predictors: Predictive Similarity 

This model is almost identical to the previous freely estimated predictor effects model. In order 

for the predictor effects to be constrained to similarity across gender, they need to be specified 

as freely estimated in the %OVERALL% section (C#1-C#2 ON Pred1 Pred2;), while removing 

the gender specific section (i.e., the MODEL CG: section). See the code in bold. Note also the 

carryover of using the SVALUES as associated with the distributional similarity model. 

%OVERALL% 

[CG#1*-0.00217 ]; [ C#1*-0.93515 ]; [ C#2*0.49113 ]; 

C#1-C#2 ON Pred1 Pred2; 

%CG#1.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2);  

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 

IND2_T1*2.12542 (v2);   

IND3_T1*1.59137 (v3); 

%CG#1.C#2% 

[IND1_T1*-0.18248 ] (m4); 

[IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6); 

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6);  

%CG#1.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9);  

%CG#2.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2); 

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 

IND2_T1*2.12542 (v2); 

IND3_T1*1.59137 (v3);  

%CG#2.C#2% 

[IND1_T1*-0.18248 ] (m4); 

IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6);  

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6);  

%CG#2.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9); 
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Multiple-Group Latent Profile Analyses with Outcomes: Relations Freely Estimated 

Across Subgroups  

This model also uses the SVALUES associated with the distributional similarity model. Similar 

to the direct inclusion and manual implementation approaches to covariates, we request the free 

estimation of the distal outcome means and variances in all profiles across gender (i.e., [Out1]; 

Out1; [Out2]; Out2;), and add labels in parentheses to identify these new parameters. These 

new parameters will then be used in a MODEL CONSTRAINT section to request tests of the 

significance of mean differences between profiles within genders. See the code in bold. 

 

%OVERALL% 

[CG#1*-0.00217 ]; [ C#1*-0.93515 ]; [ C#2*0.49113 ]; 

 

%CG#1.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2);  

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 

IND2_T1*2.12542 (v2);   

IND3_T1*1.59137 (v3);  

[Out1] (oa1); 

Out1; 

[Out2] (ob1); 

Out2; 

%CG#1.C#2% 

[IND1_T1*-0.18248 ] (m4); 

[IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6); 

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6);  

[Out1] (oa2); 

Out1; 

[Out2] (ob2); 

Out2; 

%CG#1.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9); 

[Out1] (oa3); 

Out1; 

[Out2] (ob3); 

Out2; 

%CG#2.C#1% 

[IND1_T1*-1.59367 ] (m1); 

[IND2_T1*-0.93155 ] (m2); 

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1); 
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IND2_T1*2.12542 (v2); 

IND3_T1*1.59137 (v3); 

[Out1] (oaa1); 

Out1; 

[Out2] (obb1); 

Out2; 

%CG#2.C#2% 

[IND1_T1*-0.18248 ] (m4); 

IND2_T1*-0.29812 ] (m5); 

[IND3_T1*-0.15201 ] (m6);  

IND1_T1*0.42376 (v4); 

IND2_T1*0.43116 (v5); 

IND3_T1*0.72513 (v6); 

[Out1] (oaa2); 

Out1; 

[Out2] (obb2); 

Out2; 

%CG#2.C#3% 

[IND1_T1*0.94111 ] (m7); 

[IND2_T1*0.86526 ] (m8); 

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7); 

IND2_T1*0.48030 (v8); 

IND3_T1*1.13489 (v9); 

[Out1] (oaa3); 

Out1; 

[Out2] (obb3); 

Out2; 

MODEL CONSTRAINT: 

NEW (y12); y12 = oa1-oa2; 

NEW (y13); y13 = oa1-oa3; 

NEW (y23); y23 = oa2-oa3; 

NEW (z12); z12 = ob1-ob2 

NEW (z13); z13 = ob1-ob3; 

NEW (z23); z23 = ob2-ob3; 

NEW (yy12); yy12 = oaa1-oaa2; 

NEW (yy13); yy13 = oaa1-oaa3; 

NEW (yy23); yy23 = oaa2-oaa3; 

NEW (zz12); zz12 = obb1-obb2; 

NEW (zz13); zz13 = obb1-obb3; 

NEW (zz23); zz23 = obb2-obb3; 
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Multiple-Group Latent Profile Analyses with Outcomes: Explanatory Similarity 

This model is almost identical to the previous model, except that the parameter labels are used 

to constrain the outcome means are invariant across gender. As a result, fewer lines of code are 

required in the MODEL COSNTRAINT section.  

%OVERALL% 

[ CG#1*-0.00217 ]; [ C#1*-0.93515 ]; [ C#2*0.49113 ]; 

 

%CG#1.C#1% 

[IND1_T1*-1.59367 ] (m1);  

[IND2_T1*-0.93155 ] (m2);  

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1);  

IND2_T1*2.12542 (v2);   

IND3_T1*1.59137 (v3); 

[Out1] (oa1); 

Out1; 

[Out2] (ob1); 

Out2; 

 

%CG#1.C#2% 

[IND1_T1*-0.18248 ] (m4);  

[IND2_T1*-0.29812 ] (m5);  

[IND3_T1*-0.15201 ] (m6); 

IND1_T1*0.42376 (v4);  

IND2_T1*0.43116 (v5);  

IND3_T1*0.72513 (v6); 

[Out1] (oa2); 

Out1; 

[Out2] (ob2); 

Out2; 

 

%CG#1.C#3% 

[IND1_T1*0.94111 ] (m7);  

[IND2_T1*0.86526 ] (m8);  

[IND3_T1*0.08333 ] (m9);  

IND1_T1*0.44053 (v7);  

IND2_T1*0.48030 (v8);  

IND3_T1*1.13489 (v9); 

[Out1] (oa3); 

Out1; 

[Out2] (ob3); 

Out2; 

 

%CG#2.C#1% 

[IND1_T1*-1.59367 ] (m1);  

[IND2_T1*-0.93155 ] (m2);  

[IND3_T1*0.39664 ] (m3);  

IND1_T1*0.53789 (v1);  

IND2_T1*2.12542 (v2);  

IND3_T1*1.59137 (v3); 
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[Out1] (oa1); 

Out1; 

[Out2] (ob1); 

Out2; 

 

%CG#2.C#2% 

[IND1_T1*-0.18248 ] (m4);  

IND2_T1*-0.29812 ] (m5);  

[IND3_T1*-0.15201 ] (m6);  

IND1_T1*0.42376 (v4);  

IND2_T1*0.43116 (v5);  

IND3_T1*0.72513 (v6); 

[Out1] (oa2); 

Out1; 

[Out2] (ob2); 

Out2; 

 

%CG#2.C#3% 

[IND1_T1*0.94111 ] (m7);  

[IND2_T1*0.86526 ] (m8);  

[IND3_T1*0.08333 ] (m9); 

IND1_T1*0.44053 (v7);  

IND2_T1*0.48030 (v8);  

IND3_T1*1.13489 (v9); 

[Out1] (oa3); 

Out1; 

[Out2] (ob3); 

Out2; 

 

MODEL CONSTRAINT: 

NEW (y12); y12 = oa1-oa2; 

NEW (y13); y13 = oa1-oa3; 

NEW (y23); y23 = oa2-oa3; 

NEW (z12); z12 = ob1-ob2; 

NEW (z13); z13 = ob1-ob3; 

NEW (z23); z23 = ob2-ob3; 
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Mixture Regression Analysis 

Mixture regression analyses specify a regression model in the %OVERALL% section of the 

input indicating that an outcome, Out1, is regressed ON a series of predictors, IND1_T1, 

IND2_T1, and IND3_T1. Then, the profile-specific sections of the input request that these 

regression relations be freely estimated across each profile. In the basic mixture regression 

model, the mean and variance of the outcome(s) also need to be freely estimated in each profile 

as they respectively reflect the intercepts and residuals of the regression equations. One aspect 

of this basic model is that the means and variances of the predictors are held equal across classes 

because they are considered exogenous to the focal mixture (which reflects the underlying 

regression equation). 

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

%C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

Out1; [Out1]; 

%C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

Out1; [Out1]; 

%C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

Out1; [Out1]; 

 

A more flexible (and potentially more realistic) representation of a mixture regression model 

also specifies freely estimated means and variances of the predictors in each profile. This results 

in a hybrid model that combines LPA (for the predictors) and mixture regression(s), and can 

highlight how the regression relations differ as a function of the latent profiles that are defined 

on the basis of differential configurations of predictor scores (Chénard Poirier, Morin, & 

Boudrias, 2017; see also McLarnon & O’Neill, 2018). As above, this specification results in 

correlations between the exogenous variables (i.e., IND1_T1, IND2_T1, and IND3_T1) that 

are constrained to equality across profiles. These constraints, and their implied homogeneity 

assumption, can be relaxed by additionally including IND1_T1 WITH IND2_T1 IND3_T1; 

IND2_T1 WITH IND3_T1; in each profile-specific subsection. Though, given concerns 

highlighted previously, caution should be exercised in implementing these changes and 

incorporating correlated uniquenesses. 

 

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

%C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

[Out1 IND1_T1 IND2_T1 IND3_T1]; 

Out1 IND1_T1 IND2_T1 IND3_T1;  

%C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

[Out1 IND1_T1 IND2_T1 IND3_T1]; 

Out1 IND1_T1 IND2_T1 IND3_T1;  

%C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1;  

[Out1 IND1_T1 IND2_T1 IND3_T1]; 

Out1 IND1_T1 IND2_T1 IND3_T1;  

 



Supplements for Mixture Modeling   S37 

Multiple Group Mixture Regression Analysis: Configural Similarity  

 

This set-up is highly similar to the one used for the multiple groups LPA models. Here again, 

the KNOWNCLASS option is used to define the gender groups in the VARIABLE section:  

 

KNOWNCLASS = CG(Gender = 1 Gender = 2);  

CLASSES = CG(2) C(3); 

 

The MODEL then section describes the model of configural similarity. 

%OVERALL% 

C#1 ON CG#1;  

C#2 ON CG#1; 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (rr1-rr3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm1-mm4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv1-vv4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (rr11-rr13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm11-mm14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv11-vv14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (rr21-rr23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm21-mm24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv21-vv24); 
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Multiple Group Mixture Regression Analysis: Regression Similarity 

The only difference between this model and the previous one is that the regression coefficients 

are now constrained to equality across gender groups within respective profiles using identical 

parameter labels in parentheses. Labels in bold were modified from the previous model. 

%OVERALL% 

C#1 ON CG#1;  

C#2 ON CG#1; 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm1-mm4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv1-vv4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm11-mm14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv11-vv14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (mm21-mm24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv21-vv24);  
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Multiple Group Mixture Regression Analysis: Structural Similarity 

Means of both predictors and outcome are constrained to equality across gender within each 

mixture group using identical labels in parentheses. Labels in bold were modified from the 

previous model. 

%OVERALL% 

C#1 ON CG#1;  

C#2 ON CG#1; 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv1-vv4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv11-vv14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (vv21-vv24);  
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Multiple Group Mixture Regression Analysis: Dispersion Similarity 

Variances are constrained to equality across gender within each profile using identical labels in 

parentheses. Labels in bold were modified from the previous model. 

%OVERALL% 

C#1 ON CG#1;  

C#2 ON CG#1; 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24); 

 

  



Supplements for Mixture Modeling   S41 

Multiple Group Mixture Regression Analysis: Distributional Similarity 

The only difference between this model and the dispersion similarity mixture regression model 

is that the commands associated with the C#k ON CG#k regressions within the %OVERALL% 

section have been omitted to reflect that the sizes of the mixture groups are no longer 

conditional on gender (or group membership). 

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  
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Multiple Group Mixture Regression Analysis with Predictors: Relations Freely 

Estimated Across Subgroups  

To ensure stability, starting values from the previously most similar solution should be used 

(not illustrated here for clarity). To allow the predictor relations to be freely estimated across 

gender, they need to be constrained to 0 in the %OVERALL% section, and freely estimated in 

both gender groups in a new section of the input specifically referring to MODEL CG: (see 

commands in bold). 

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

C#1-C#2 ON Pred1@0 Pred2@0; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24); 

 

MODEL CG: 

%CG#1% 

C#1-C#2 ON Pred1 Pred2; 

%CG#2% 

C#1-C#2 ON Pred1 Pred2; 
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Multiple Group Mixture Regression Analysis with Predictors: Predictive Similarity 

In order for the effects of the predictors to be constrained to similarity across gender, they 

simply need to be specified as freely estimated in the %OVERALL% section (C#1-C#2 ON 

Pred1 Pred2;), in conjunction with removing the gender specific section (i.e., the MODEL CG: 

section). See the code in bold. Again, to ensure stability, starting values from the previously 

most similar solution should be used.  

 

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

C#1-C#2 ON Pred1 Pred2; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24); 
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Multiple Group Mixture Regression Analysis with Outcomes: Relations Freely 

Estimated Across Subgroups 

Here, we request the free estimation of the distal outcome means ([Out2];) in all profile groups 

across gender. We also use labels in parentheses to identify these parameters, which are then 

used in a MODEL CONSTRAINT section to request tests of the significance of the mean 

differences. See the code in bold. To ensure stability, start values from the previously most 

similar solution should be used.  

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4); 

[Out2] (ob1); Out2;  

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

[Out2] (ob2); Out2; 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

[Out2] (ob3); Out2; 

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

[Out2] (obb1); Out2; 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

[Out2] (obb2); Out2; 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24); 

[Out2] (obb3); Out2; 

 

MODEL CONSTRAINT: 

NEW (z12); z12 = ob1-ob2; 

NEW (z13); z13 = ob1-ob3; 

NEW (z23); z23 = ob2-ob3; 

NEW (zz12); zz12 = obb1-obb2; 

NEW (zz13); zz13 = obb1-obb3; 

NEW (zz23); zz23 = obb2-obb3; 
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Multiple Group Mixture Regression Analysis with Outcomes: Explanatory Similarity  

This model is almost identical to the previous model, except that parameter labels are used to 

constrain the outcome means to be invariant across gender. As a result, fewer lines of code are 

required in the MODEL COSNTRAINT section. To ensure stability, starting values from the 

previously most similar solution should be used.  

%OVERALL% 

Out1 ON IND1_T1 IND2_T1 IND3_T1; 

 

%CG#1.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4); 

[Out2] (ob1); Out2; 

%CG#1.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

[Out2] (ob2); Out2; 

%CG#1.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

[Out2] (ob3); Out2; 

 

%CG#2.C#1% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r1-r3);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m1-m4);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v1-v4);  

[Out2] (ob1); Out2; 

%CG#2.C#2% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r11-r13);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m11-m14);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v11-v14);  

[Out2] (ob2); Out2; 

%CG#2.C#3% 

Out1 ON IND1_T1 IND2_T1 IND3_T1 (r21-r23);  

[Out1 IND1_T1 IND2_T1 IND3_T1] (m21-m24);  

Out1 IND1_T1 IND2_T1 IND3_T1 (v21-v24);  

[Out2] (ob3); Out2; 

 

MODEL CONSTRAINT: 

NEW (z12); z12 = ob1-ob2; 

NEW (z13); z13 = ob1-ob3; 

NEW (z23); z23 = ob2-ob3; 
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Longitudinal Latent Profile Analysis: Configural Similarity 

The estimation of a longitudinal latent profile analysis is highly similar to the estimation of a 

multiple-group LPA with the exception that the KNOWNCLASS function (which previously 

defined the observed grouping variable, gender, and was coded as CG) is replaced with another 

unobserved latent categorical variable that represents profiles groups estimated at another time 

point. The VARIABLE section of the syntax is of course also adapted to include both sets of 

Time 1 and Time 2 indicators). 

CLASSES = C1(3) C2(3); 

 

Because of the similarity of the inputs, we do not comment on the sequence of similarity tests 

in the next sections (see commands in bold that denote components of the syntax that are 

adjusted at each step), and refer readers to the multi-group models. In this model, two sections 

of the input are used to define the profiles estimated at the first (MODEL C1:) and second 

(MODEL C2:) time points, where the profiles are defined by distinct variables reflecting the 

indicators measured at either the first (e.g., IND1_T1) or second (e.g., IND1_T2) time point.  

%OVERALL% 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (mm1-mm3);  

IND1_T2 IND2_T2 IND3_T2 (vv1-vv3);  

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (mm4-mm6);  

IND1_T2 IND2_T2 IND3_T2 (vv4-vv6);  

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (mm7-mm9);  

IND1_T2 IND2_T2 IND3_T2 (vv7-vv9);  
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Longitudinal Latent Profile Analysis: Structural Similarity 

 

%OVERALL% 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (vv1-vv3);  

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (vv4-vv6);  

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (vv7-vv9);  

 

Longitudinal Latent Profile Analysis: Dispersion Similarity 

 

%OVERALL% 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  
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Longitudinal Latent Profile Analysis: Distributional Similarity  

In contrast to the multi-group distributional similarity model, which invoked regressions of the 

C#k profiles on the CG#k groupings, in longitudinal LPAs, labels are used to constrain the sizes 

of the profiles (proportions of cases assigned to each profile) to equality over time points. 

%OVERALL% 

[C1#1] (p1); 

[C1#2] (p2); 

[C2#1] (p1); 

[C2#2] (p2); 

 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  

 

 

 

  



Supplements for Mixture Modeling   S49 

Latent Transition Analysis (From a LPA Model of Dispersion Similarity) 

In the basic two-occasion LTA, the %OVERALL% section states that membership into the 

profiles at the second time point (C2) are conditional on membership in the profiles estimated 

at the first time point (C1). This is necessary to estimate the individual transition probabilities 

over time. This is the only change (see command in bold) that is required to convert a 

longitudinal LPA model with dispersional similarity to a LTA model. However, an important 

caveat is that the procedure required to convert a LPA model with distributional similarity to a 

LTA is more complex (for details, see Morin & Litalien, 2017: 

https://smslabstats.weebly.com/webnotes.html). 

%OVERALL% 

C2 ON C1; 

 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  

 

https://smslabstats.weebly.com/webnotes.html
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Latent Transition Analysis with Predictors: Relations freely estimated across profiles 

and time points 

In this model, the effects of the predictors are allowed to differ across time points. Specifically, 

separate commands are given for the regression of Time 1 and Time 2 profiles (C1 and C2, 

respectively) on the predictors. In addition, the effects of the predictors on the Time 2 profiles 

are allowed to differ across the Time 1 profiles in order to assess their specific role in the 

prediction of specific profile-to-profile transitions. In other words, this allows for the predictors 

to moderate the transition probabilities between C1 and C2 profiles. As in previous models, to 

ensure stability, starting values from the previously most similar solution should be used. In 

conjunction with this parameterization, users may wish to add TECH15 to the OUTPUT 

command to obtain marginal and conditional probabilities (including transition probabilities) 

for the latent categorical (i.e., profiles) variables included in the model. As well, conditional 

probabilities of individual profile membership and transitions probabilities can be computed for 

different values (i.e., mean, ±1SD; see McLarnon et al., 2019) of the predictors to assess 

presence of a moderating effect of the predictors using Mplus’ built-in LTA calculator (which 

is available from the Mplus drop-down menu of the Mplus Editor window). 

%OVERALL% 

C2 on C1; 

[C1#1] (p1); [C1#2] (p2); 

[C2#1] (p1); [C2#2] (p2); 

C1 ON Pred1 Pred2; 

C2 ON Pred1 Pred2; 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3); 

C2 ON Pred1 Pred2; 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6); 

C2 ON Pred1 Pred2; 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

C2 ON Pred1 Pred2; 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3); 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  

OUTPUT: TECH15; 
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Latent Transition Analysis with Predictors: Relations freely estimated across time 

points 

This model is very similar to the previous one, and has only removed the commands that 

specified unique predictor relations across the Time 1 profiles. To ensure stability, start values 

from the previously most similar solution should be used.  

%OVERALL% 

C2 on C1; 

[C1#1] (p1); 

[C1#2] (p2); 

[C2#1] (p1); 

[C2#2] (p2); 

 

C1 ON Pred1 Pred2; 

C2 ON Pred1 Pred2; 

 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  
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Latent Transition Analysis with Predictors: Predictive Similarity  

To ensure stability, start values from the previously most similar solution should be used.  

%OVERALL% 

C2 on C1; 

[C1#1] (p1); 

[C1#2] (p2); 

[C2#1] (p1); 

[C2#2] (p2); 

 

C1 ON Pred1 (pr1-pr2);  

! one fewer labels than the number of latent profiles is needed 

! i.e., the full expansion of the parameters implied here is: 

! C1#1 ON Pred1 (pr1); C1#2 ON Pred1 (pr2); 

 

C2 ON Pred1 (pr1-pr2); 

C1 ON Pred2 (pr3-pr4); 

C2 ON Pred2 (pr3-pr4); 

 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3);  

 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6);  

 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9);  

 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6);  

 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  
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Latent Transition Analysis with Outcomes: Relations freely estimated across time points 

Here, we use a case where a single outcome, Out, was measured twice, and show how time-

invariant relations could be estimated (i.e., Out1 is the outcome for only the Time 1 profiles, 

and Out2 is the same outcome but measured at Time 2). As a separate research question, mean 

differences across the different transition patterns could be investigated by applying similarly 

structured syntax as described for the multi-group LPA (i.e., develop %C1#1.C2#1% and 

provide [Out1]; Out1; commands to allow the outcome to vary across transition patterns. As 

well, parameter labels can be applied to each of these outcome means, and then tested for 

significant differences using a series of MODEL CONSTRAINTS as illustrated here; see 

McLarnon et al., 2019 for an example and syntax). To ensure stability, start values from the 

previously most similar solution should be used. 

%OVERALL% 

C2 on C1; 

[C1#1] (p1); 

[C1#2] (p2); 

[C2#1] (p1); 

[C2#2] (p2); 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3); 

[Out1] (oa1); Out1; 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6); 

[Out1] (oa2); Out1; 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9); 

[Out1] (oa3); Out1; 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3); 

[Out2] (ob1); Out2; 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6); 

[Out2] (ob2); Out2; 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9); 

[Out2] (ob3); Out2; 

MODEL CONSTRAINT: 

NEW (y12); y12 = oa1-oa2; 

NEW (y13); y13 = oa1-oa3; 

NEW (y23); y23 = oa2-oa3; 

NEW (z12); z12 = ob1-ob2 

NEW (z13); z13 = ob1-ob3; 

NEW (z23); z23 = ob2-ob3; 
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Latent Transition Analysis with Outcomes: Explanatory Similarity 

Here, similar labels for the outcomes are applied across Time 1 and Time 2 profiles. As noted 

previously, to ensure stability, starting values from the previously most similar solution should 

be used.  

%OVERALL% 

C2 on C1; 

[C1#1] (p1); 

[C1#2] (p2); 

[C2#1] (p1); 

[C2#2] (p2); 

 

MODEL C1:  

%C1#1% 

[IND1_T1 IND2_T1 IND3_T1] (m1-m3);  

IND1_T1 IND2_T1 IND3_T1 (v1-v3); 

[Out1] (oa1); Out1; 

%C1#2% 

[IND1_T1 IND2_T1 IND3_T1] (m4-m6);  

IND1_T1 IND2_T1 IND3_T1 (v4-v6); 

[Out1] (oa2); Out1; 

%C1#3% 

[IND1_T1 IND2_T1 IND3_T1] (m7-m9);  

IND1_T1 IND2_T1 IND3_T1 (v7-v9); 

[Out1] (oa3); Out1; 

 

MODEL C2:  

%C2#1% 

[IND1_T2 IND2_T2 IND3_T2] (m1-m3);  

IND1_T2 IND2_T2 IND3_T2 (v1-v3);  

[Out2] (oa1); Out2; 

%C2#2% 

[IND1_T2 IND2_T2 IND3_T2] (m4-m6);  

IND1_T2 IND2_T2 IND3_T2 (v4-v6); 

[Out2] (oa2); Out2; 

%C2#3% 

[IND1_T2 IND2_T2 IND3_T2] (m7-m9);  

IND1_T2 IND2_T2 IND3_T2 (v7-v9);  

[Out2] (oa3); Out2; 

 

MODEL CONSTRAINT: 

NEW (y12); y12 = oa1-oa2; 

NEW (y13); y13 = oa1-oa3; 

NEW (y23); y23 = oa2-oa3; 
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Linear Growth Mixture Analysis 

In a latent curve model (LCM) estimated in Mplus the “I S |” command serves as a shortcut to 

define the latent intercept and slope factors, which is followed by a specification of the time-

varying indicators and their time codes (i.e., λt; their loadings on the intercept and slope factor). 

In this input, we request the means of the intercepts and slope factors ([I S];), their variances (I 

S;), their covariances (I WITH S;), and all time specific residuals (IND1_T1, IND1_T2, 

IND1_T3, IND1_T4, IND1_T5, IND1_T6;) be freely estimated in all profiles. Here, we assume 

six repeated measures of a specific indicator (IND1_T1- IND1_T6; which would, of course, 

have been defined in the NAMES and USEVARIABLE commands), equally spaced (otherwise 

the slope loadings would need to be adjusted to reflect the actual time intervals), with an 

intercept located at Time 1. Code to plot these trajectories is provided on the following page. 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

%C#1% 

[I S] (int1 slope1); 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

[I S] (int2 slope2); 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

[I S] (int3 slope3); 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

The following functions provide two alternative ways to plot these trajectories. The first way 

uses Mplus’ default plotting procedure. The second function requires some additional user 

customization, but advantageously, can provide a plot with confidence intervals around the 

trajectories in each profile group, and is specified within a MODEL CONSTRAINT procedure. 

With the PLOT command, arbitrary labels are used to define the trajectories to be plotted. 

Conceivably there should be one for each profile group, and there are three in this example. The 

LOOP function then defines an arbitrary label for a variable that will be used in computing the 

equations for each trajectory. Here, “Time” is used to reflect the notion of growth curves. The 

rest of the LOOP function requests that “Time” is given an interval of 0 to 5, and is increased 

by 0.1 increments. So, in the computation of the following Profile1 trajectory, values for “Time” 

between 0 and 5, increasing at 0.1 increments will be included in the equation, and then the 

resulting values will be plotted. Here, the interval of 0 to 5 was chosen to reflect plotted the 

trajectories to start at same point as the measurement occasions (i.e., the intercept, before any 

linear change occurred), and six measures were obtained. These values can be adjusted for any 

particular application. Critically, this approach also requires the labeling of the mean intercept 

and slope mean parameters in each class (i.e., int1 and slope1) to be used in the calculations of 

the trajectories. 

PLOT:  

TYPE IS PLOT3; 

SERIES = IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (*);   
 

MODEL CONSTRAINT: 

PLOT(Profile1 Profile2 Profile3); 

LOOP(Time,0,5,0.1); 

Profile1 = int1+Time*slope1; 

Profile2 = int2+Time*slope2;  

Profile3 = int3+Time*slope3; 
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As noted in our main description of linear growth mixture models, simpler parameterizations 

are possible should the above, fully variant model fail to converge on proper solutions. Our 

preference is to test these alternative models in the following order:  
1. Alternative A – Homoscedastic Residuals (equal across time points) 
2. Alternative B – Class-Invariant Residuals  
3. Alternative C – Class-Invariant Latent Variance-Covariance Matrix  
4. Alternative D – Class-Invariant Homoscedastic Residuals (equal across time 

points) 
5. Alternative E – Class-Invariant Latent Variance-Covariance Matrix and 

Homoscedastic Residuals  
6. Alternative – Class-Invariant Latent Variance-Covariance Matrix and Class-

Invariant Residuals  
7. Alternative G – Class-Invariant Latent Variance-Covariance Matrix and Class-

Invariant Homoscedastic Residuals 
 

 

Alternative A – Homoscedastic Residuals (equal across time points) 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R2); 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R3); 
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Alternative B – Class-Invariant Residuals 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

 

 

Alternative C – Class-Invariant Latent Variance-Covariance Matrix 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Alternative D – Class-Invariant Homoscedastic Residuals (equal across time points) 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

 

Alternative E – Class-Invariant Latent Variance-Covariance Matrix and Homoscedastic 

Residuals 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#2% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R2); 

 

%C#3% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R3); 
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Alternative F – Class-Invariant Latent Variance-Covariance Matrix and Class-Invariant 

Residuals 

 

Note that this is the default specification within Mplus. 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

 

%C#2% 

[I S]; 

 

%C#3% 

[I S]; 

 

 

Alternative G – Class-Invariant Latent Variance-Covariance Matrix and Class-Invariant 

Homoscedastic Residuals 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#2% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 

 

%C#3% 

[I S]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (R1); 
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Quadratic Growth Mixture Analysis 

A quadratic slope factor (Q) can be added to allow for curvilinear trends. The following code 

provides the commands for the fully variant model, but the sequential testing described above 

can be applied to derive simpler parameterizations should issues of convergence or statistical 

adequacy result. The same two plotting procedures, noted above, can be applied, but we detail 

the LOOP approach below given the need for more user customization. If further polynomial 

functions are required, their factor label (i.e., CU for cubic [labeling it C would duplicate the 

label assigned to the latent profiles and would not be allowed], etc.) would just be added to the 

growth statement before the | symbol, similar to the difference between the linear and quadratic 

functions. Additional commands for the extra polynomial functions would then be added to 

each profile-specific section. 

%OVERALL% 

I S Q | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

I S Q; 

[I S Q] (int1 linear1 quad1); 

I WITH S Q; 

S WITH Q;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

I S Q; 

[I S Q] (int2 linear2 quad2); 

I WITH S Q; 

S WITH Q;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

I S Q; 

[I S Q] (int3 linear3 quad3); 

I WITH S Q; 

S WITH Q;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

MODEL CONSTRAINT: 

PLOT(Profile1 Profile2 Profile3); 

LOOP(Time,0,5,0.1); 

Profile1 = int1+Time*linear1+quad1*Time**2; 

Profile2 = int2+Time*linear2+quad2*Time**2; 

Profile3 = int3+Time*linear3+quad3*Time**2;  
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Piecewise Growth Mixture Analysis 

A piecewise growth model implements multiple slope factors to account for distinct ‘before 

and after’ trajectories that may be exhibited. Two linear slope factors (here, S1 and S2) can be 

defined to represent linear changes before and after a transition point. In this example, the 

second slope or trajectory begins at Time 4. As in previous models, simpler parameterizations 

are possible to implement should they be required. As well, piecewise models can be specified 

to include curvilinear trajectories before and/or after the transition point. For plotting, the LOOP 

function would not be readily available because Mplus can only allow for a single LOOP 

command in an analysis (it may however be possible to adjust the starting and ending points of 

the LOOP and import the calculated plot data from separate LOOPs into Microsoft Excel and 

replot the trajectories there, but this is not an overly straightforward procedure). However, the 

built-in PLOT command can be used straightforwardly to visualize the functions. 

%OVERALL% 

I S1 | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@2 IND1_T5@2 IND1_T6@2; 

I S2 | IND1_T1@0 IND1_T2@0 IND1_T3@0 IND1_T4@1 IND1_T5@2 IND1_T6@3; 

%C#1% 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2;  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

PLOT:  

TYPE IS PLOT3; 

SERIES = IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (*); 
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Latent Basis Growth Mixture Analysis 

In a latent basis model, two loadings (typically the first and last) need to be fixed, respectively, 

to 0 and 1 (i.e., using @0 and @1) while the other loadings are freely estimated (i.e., using *). 

Here, we request that the loadings for the Time 2, 3, 4, and 5 assessments be freely estimated 

in all profiles by repeating these commands in the profile-specific sections. As in previous 

models, simpler parameterizations are possible to implement should they be required. The 

LOOP function will not adequately demonstrate the growth trajectories because the differing 

factor loadings on the slope factor (reflecting non-linearity) cannot be taken into account (i.e., 

the slope factor in a latent basis model only reflects the total change occurring over time). The 

PLOT command can therefore be used to visualize the growth trajectories. 

 

%OVERALL% 

I S | IND1_T1@0 IND1_T2* IND1_T3* IND1_T4* IND1_T5* IND1_T6@1; 

 

%C#1% 

I S | IND1_T1@0 IND1_T2* IND1_T3* IND1_T4* IND1_T5* IND1_T6@1; 

I S; 

[I S] (int1 slope1); 

I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

I S | IND1_T1@0 IND1_T2* IND1_T3* IND1_T4* IND1_T5* IND1_T6@1; 

I S; 

[I S] (int2 slope2); 

I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

I S | IND1_T1@0 IND1_T2* IND1_T3* IND1_T4* IND1_T5* IND1_T6@1; 

I S; 

[I S] (int3 slope3); 

I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

TYPE IS PLOT3: 

SERIES = IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (*); 
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Mehta and West (2000) Test 

As change may occur differentially for cases that differ on tenure or age (at the first assessment), 

bias may be introduced into the meaning and interpretation of the latent slope. Mehta and West 

(2000) advised assessing the relation that age (or any other meaningful time-related variable) 

has on the estimate of the latent slope. In particular, they noted that variations in individuals’ 

initial age/tenure/grade can be considered negligible when the following two conditions are 

met: (1) the regression of the intercept of a LCM on age is equal to the mean of the slope factor, 

and (2) the regression of the slope factor on age is equal to zero. Testing these conditions 

involves contrasting a typical, unrestricted LCM model that incorporates age as a predictor of 

the intercept and slope factors to a model in which these two conditions are imposed. If the 

more constrained model fits the data as well as the first model (as assessed via typical goodness-

of-fit indices), then the impact of age can be considered to be negligible.  

 

Initial Model:  

VARIABLE: 

NAMES = ID Age IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6;  

USEVARIABLES = Age IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6;  

MISSING = all (999); 

IDVARIABLE = ID; 

ANALYSIS: 

ESTIMATOR = MLR;  

MODEL:  

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

I ON Age; 

S ON Age; 

 

Constrained Model:  

MODEL:  

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

I ON Age (c1); 

[S] (c1); 

S ON Age@0; 
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Age-Defined Linear Growth Mixture Analysis 

To estimate a growth mixture analysis where age (or any other variable differing across 

individuals) is used to define the time codes (i.e., factor loadings for the latent slope), this 

variable needs to be identified using the CONSTRAINT command of the VARIABLE section 

of the syntax. The CONSTRAINT command identifies variables used only in the MODEL 

CONSTRAINT section of the syntax. In the age-defined growth model, the loadings on the 

slope factor (representing the time code), rather than being fixed to specific values, are freely 

estimated and assigned a label (here, L1 to L6). Using this approach involves relying on the 

complete specification of the LCM model (without being able to use the shortcut function 

associated with the | symbol). To apply a complete specification, one also has to constrain the 

time specific intercepts to 0, and request the free estimation of the intercept and slope factor 

means in the %OVERALL% section. In this example, we define trajectories on the basis of 

individually-varying ages (coded in years), and want to set the intercept of the trajectories to 

that of a 25-year old (hence the subtraction of 25 in each of the MODEL CONSTRAINT 

equations; this corresponds to the age of the youngest employee at Time 1). Measurement 

occurred at annual intervals that were equal for all participants. If measurement intervals also 

differed across participants, then one AGE variable would be required for each time of 

measurement (i.e., Age_T1, Age_T2, etc.). With this approach, time-specific residuals should 

be specified as homoscedastic (equal across time points) as the alternative approach of allowing 

them to differ across time of measurement would be inconsistent with the definition of time 

codes that ignore the time of measurement. The default PLOT function does not work in this 

context, so that the trajectories would need to be plotted with the LOOP function described 

earlier, or graphed manually. This model is illustrated on the following page:  

 

VARIABLE: 

NAMES = ID Age IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6;  

USEVARIABLES = IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6;  

MISSING = all (999); 

IDVARIABLE = ID; 

CONSTRAINT = Age; 

CLASSES = C(3); 

ANALYSIS: 

TYPE = MIXTURE COMPLEX;  ESTIMATOR = MLR;  

PROCESS = 3; STARTS = 3000 100; STITERATIONS = 100; 

 

MODEL: 

%OVERALL% 

 

I BY IND1_T1@1 IND1_T2@1 IND1_T3@1 IND1_T4@1 IND1_T5@1 IND1_T6@1; 

S BY IND1_T1* (L1) 

          IND1_T2 (L2) 

          IND1_T3 (L3) 

          IND1_T4 (L4) 

          IND1_T5 (L5) 

          IND1_T6 (L6); 

 

I S; I WITH S;  [I S];  

 

[IND1_T1@0 IND1_T2@0 IND1_T3@0 IND1_T4@0 IND1_T5@0 IND1_T6@0]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 



Supplements for Mixture Modeling   S65 

%C#1% 

I S; I WITH S;  

[I S] (int1 slope1);  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r1); 

%C#2% 

I S; I WITH S;  

[I S] (int2 slope2);  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r2); 

%C#3% 

I S; I WITH S;  

[I S] (int3 slope3);  

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r3); 

 

MODEL CONSTRAINT: 

L1 = AGE - 25; 

L2 = AGE - 25 + 1; 

L3 = AGE - 25 + 2; 

L4 = AGE - 25 + 3; 

L5 = AGE - 25 + 4; 

L6 = AGE - 25 + 5; 

 

MODEL CONSTRAINT: 

PLOT(Profile1 Profile2 Profile3);  LOOP(Time,0,5,0.1); 

Profile1 = int1+Time*slope1; 

Profile2 = int2+Time*slope2;  

Profile3 = int3+Time*slope3; 
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Age-Defined Quadratic Growth Mixture Analysis 

A similar approach can be used for a quadratic model (or any other polynomial models, where 

the form of the polynomial would apply to the equations used within the MODEL 

CONSTRAINT; i.e., the functions are squared in the below quadratic formulation). As above, 

the LOOP function or manual plotting of the resulting trajectories would be needed. 

MODEL: 

%OVERALL% 

I BY IND1_T1@1 IND1_T2@1 IND1_T3@1 IND1_T4@1 IND1_T5@1 IND1_T6@1; 

S BY IND1_T1* (L1) 

          IND1_T2 (L2) 

          IND1_T3 (L3) 

          IND1_T4 (L4) 

          IND1_T5 (L5) 

          IND1_T6 (L6); 

Q BY IND1_T1* (Q1) 

          IND1_T2 (Q2) 

          IND1_T3 (Q3) 

          IND1_T4 (Q4) 

          IND1_T5 (Q5) 

          IND1_T6 (Q6); 

I S Q; I WITH S Q; S WITH Q;  

[I S Q];  

[IND1_T1@0 IND1_T2@0 IND1_T3@0 IND1_T4@0 IND1_T5@0 IND1_T6@0]; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#1% 

I S Q; I WITH S Q; S WITH Q;  

[I S Q] (int1 linear1 quad1); 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r1); 

%C#2% 

I S Q; I WITH S Q; S WITH Q;  

[I S Q] (int2 linear2 quad2); 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r2); 

%C#3% 

I S Q; I WITH S Q; S WITH Q;  

[I S Q] (int3 linear3 quad3); 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6 (r3); 

 

MODEL CONSTRAINT: 

L1 = AGE - 25; 

L2 = AGE - 25 + 1; 

L3 = AGE - 25 + 2; 

L4 = AGE - 25 + 3; 

L5 = AGE - 25 + 4; 

L6 = AGE - 25 + 5; 

Q1 = (AGE - 25)**2; 

Q2 = (AGE - 25+1)**2; 

Q3 = (AGE - 25+2)**2; 

Q4 = (AGE - 25+3)**2; 

Q5 = (AGE - 25+4)**2; 

Q6 = (AGE - 25+5)**2; 

MODEL CONSTRAINT: 

PLOT(Profile1 Profile2 Profile3); 

LOOP(Time,0,5,0.1); 

Profile1 = int1+Time*linear1+quad1*Time**2; 

Profile2 = int2+Time*linear2+quad2*Time**2; 

Profile3 = int3+Time*linear3+quad3*Time**2; 
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Growth Mixture Analysis: Time-Invariant Predictors 

The following models involve contrasting a model in which the relations for the time-invariant 

predictors are restricted to zero (i.e., the null effects model), and alternative models in which 

(a) the predictors may only potentially influence class membership, (b) the predictors can 

influence class membership, and also the intercept and slope factors, but that the intercept and 

slope relations are held equal across profile groups, and (c) the predictors can influence class 

membership, and can also influence the intercept and slope freely across profiles. Adjustments 

to the syntax to facilitate these different models are highlighted in bold below. 

 

Null-Effects Model 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

C ON Pred1@0 Pred2@0; 

I ON Pred1@0 Pred2@0; 

S ON Pred1@0 Pred2@0; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

Alternative A – Freely Estimated Effects on Class Membership Only 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

C ON Pred1 Pred2; 

I ON Pred1@0 Pred2@0; 

S ON Pred1@0 Pred2@0; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

 



Supplements for Mixture Modeling   S68 

Alternative B – Effects on Class Membership and Class-Invariant Effects on the Growth 

Factors 

 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

C ON Pred1 Pred2; 

I ON Pred1 Pred2; 

S ON Pred1 Pred2; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

Alternative C – Effects on Class Membership and Class-Varying Effects on the Growth 

Factors 

 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

C ON Pred1 Pred2; 

I ON Pred1 Pred2; 

S ON Pred1 Pred2; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

I ON Pred1 Pred2; 

S ON Pred1 Pred2; 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

I ON Pred1 Pred2; 

S ON Pred1 Pred2; 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

I ON Pred1 Pred2; 

S ON Pred1 Pred2; 
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Growth Mixture Analysis: Time-Invariant Outcomes 

These analyses follow from the LPA with outcomes models described earlier. 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

[Out1] (oa1);  

[Out2] (ob1); 

Out1; 

Out2; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

[Out1] (oa2);  

[Out2] (ob2); 

Out1; 

Out2; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

[Out1] (oa3);  

[Out2] (ob3); 

Out1; 

Out2; 

 

MODEL CONSTRAINT: 

NEW (y12); 

y12 = oa1-oa2; 

NEW (y13); 

y13 = oa1-oa3; 

NEW (y23); 

y23 = oa2-oa3; 

NEW (z12); 

z12 = ob1-ob2 

NEW (z13); 

z13 = ob1-ob3; 

NEW (z23); 

z23 = ob2-ob3; 
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Growth Mixture Analysis: Time-Varying Predictors 

The following series of models presents a potential framework that can be used for time-varying 

predictors. In contrast to the previous predictor models, where the predictors targeted profile 

membership, the intercept and slope factors, or both, time-varying predictors target the focal 

indicators that have been measured at each occasion, respectively. As above, these can also 

involve a contrast between a model in which the relations for the time-varying predictors are 

restricted to zero (i.e., the null effects model), and alternative models that include (a) effects 

that are free to vary across time points, but equal across profiles, (b) effects that are free to vary 

across time points and profiles, (c) effects that are free to vary across profiles but not time 

points, and (d) effects constrained to equality across time points and profiles.  

 

Null-Effects Model 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 ON PredT1@0; 

IND1_T2 ON PredT2@0; 

IND1_T3 ON PredT3@0; 

IND1_T4 ON PredT4@0; 

IND1_T5 ON PredT5@0; 

IND1_T6 ON PredT6@0; 

[PredT1] (m1); [PredT2] (m2); [PredT3] (m3); [PredT4] (m4); [PredT5] (m5); [PredT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Alternative A – Effects Free to Vary Across Time Points but Equal Across Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 

[PredT1] (m1); [PredT2] (m2); [PredT3] (m3); [PredT4] (m4); [PredT5] (m5); [PredT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Alternative B – Effects Free to Vary Across Time Points and Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 

[PredT1] (m1); [PredT2] (m2); [PredT3] (m3); [PredT4] (m4); [PredT5] (m5); [PredT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 
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Alternative C – Effects Free to Vary Across Profiles but Not Time Points  

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 ON PredT1; 

IND1_T2 ON PredT2; 

IND1_T3 ON PredT3; 

IND1_T4 ON PredT4; 

IND1_T5 ON PredT5; 

IND1_T6 ON PredT6; 

[PredT1] (m1); [PredT2] (m2); [PredT3] (m3); [PredT4] (m4); [PredT5] (m5); [PredT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1 (r1); 

IND1_T2 ON PredT2 (r1); 

IND1_T3 ON PredT3 (r1); 

IND1_T4 ON PredT4 (r1); 

IND1_T5 ON PredT5 (r1); 

IND1_T6 ON PredT6 (r1); 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1 (r2); 

IND1_T2 ON PredT2 (r2); 

IND1_T3 ON PredT3 (r2); 

IND1_T4 ON PredT4 (r2); 

IND1_T5 ON PredT5 (r2); 

IND1_T6 ON PredT6 (r2); 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

IND1_T1 ON PredT1 (r3); 

IND1_T2 ON PredT2 (r3); 

IND1_T3 ON PredT3 (r3); 

IND1_T4 ON PredT4 (r3); 

IND1_T5 ON PredT5 (r3); 

IND1_T6 ON PredT6 (r3); 
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Alternative D – Effects Constrained to Equality Across Time Points and Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

IND1_T1 ON PredT1 (r1); 

IND1_T2 ON PredT2 (r1); 

IND1_T3 ON PredT3 (r1); 

IND1_T4 ON PredT4 (r1); 

IND1_T5 ON PredT5 (r1); 

IND1_T6 ON PredT6 (r1); 

[PredT1] (m1); [PredT2] (m2); [PredT3] (m3); [PredT4] (m4); [PredT5] (m5); [PredT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Growth Mixture Analysis: Time-Varying Outcomes 

The final series of models we present can be leveraged to investigate time-varying outcome 

relations. These are similar to the previous set of models that specified time-varying predictors. 

In contrast to the models where time-invariant outcomes were specified, these outcome 

relations are specified as a function of the focal indicators that have been measured at each 

occasion. Further, in this case the main interest might be to examine the regression relations 

between the time-specific indicators and the time-specific outcomes, rather than mean 

differences in the outcomes across the mixture groups (though they are still estimated, and may 

of course be of substantive interest). As in the time-varying predictor models, determining an 

appropriate, optimal model can involve contrasts between a model in which the relations for 

the time-varying predictors are restricted to zero (i.e., the null effects model), and alternative 

models that include (a) effects that are free to vary across time points, but equal across profiles, 

(b) effects that are free to vary across time points and profiles, (c) effects that are free to vary 

across profiles but not time points, and (d) effects constrained to equality across time points and 

profiles. In the following examples, we (a) freely estimate the full regression equation (which 

includes the slope, intercepts, and residuals) associated with the time-varying outcomes and 

allow them to differ, and (b) constrain these three components (slope, intercepts, and residuals) 

to equality across profiles and time points. Simpler models only specifying differences in 

regression slopes can also be estimated, in which case the syntax presented in greyscale should 

be omitted. Alternatively, equality constraints can be imposed and tested in sequence (on the 

slopes, then intercepts, then residuals) once the optimal model has been selected. 

 

Null-Effects Model 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

OutT1 ON IND1_T1@0; 

OutT2 ON IND1_T2@0; 

OutT3 ON IND1_T3@0; 

OutT4 ON IND1_T4@0; 

OutT5 ON IND1_T5@0; 

OutT6 ON IND1_T6@0; 

[OutT1] (m1); [OutT2] (m2); [OutT3] (m3); [OutT4] (m4); [OutT5] (m5); [OutT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Alternative A – Effects Free to Vary Across Time Points but Equal Across Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

[OutT1] (m1); [OutT2] (m2); [OutT3] (m3); [OutT4] (m4); [OutT5] (m5); [OutT6] (m6); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 
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Alternative B – Effects Free to Vary Across Time Points and Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

[OutT1] (m1); [OutT2] (m2); [OutT3] (m3); [OutT4] (m4); [OutT5] (m5); [OutT6] (m6); 

OutT1 (v1); OutT2 (v2); OutT3 (v3); OutT4 (v4); OutT5 (v5); OutT6 (v6); 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

[OutT1] (n1); [OutT2] (n2); [OutT3] (n3); [OutT4] (n4); [OutT5] (n5); [OutT6] (n6); 

OutT1 (vv1); OutT2 (vv2); OutT3 (vv3); OutT4 (vv4); OutT5 (vv5); OutT6 (vv6); 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

[OutT1] (p1); [OutT2] (p2); [OutT3] (p3); [OutT4] (p4); [OutT5] (p5); [OutT6] (p6); 

OutT1 (vvv1); OutT2 (vvv2); OutT3 (vvv3); OutT4 (vvv4); OutT5 (vvv5); OutT6 (vvv6); 
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Alternative C – Effects Free to Vary Across Profiles but Not Time Points  

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

OutT1 ON IND1_T1; 

OutT2 ON IND1_T2; 

OutT3 ON IND1_T3; 

OutT4 ON IND1_T4; 

OutT5 ON IND1_T5; 

OutT6 ON IND1_T6; 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1 (o1); 

OutT2 ON IND1_T2 (o1); 

OutT3 ON IND1_T3 (o1); 

OutT4 ON IND1_T4 (o1); 

OutT5 ON IND1_T5 (o1); 

OutT6 ON IND1_T6 (o1); 

[OutT1] (m1); [OutT2] (m1); [OutT3] (m1); [OutT4] (m1); [OutT5] (m1); [OutT6] (m1); 

OutT1 (v1); OutT2 (v1); OutT3 (v1); OutT4 (v1); OutT5 (v1); OutT6 (v1); 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1 (o2); 

OutT2 ON IND1_T2 (o2); 

OutT3 ON IND1_T3 (o2); 

OutT4 ON IND1_T4 (o2); 

OutT5 ON IND1_T5 (o2); 

OutT6 ON IND1_T6 (o2); 

[OutT1] (m2); [OutT2] (m2); [OutT3] (m2); [OutT4] (m2); [OutT5] (m2); [OutT6] (m2); 

OutT1 (v2); OutT2 (v2); OutT3 (v2); OutT4 (v2); OutT5 (v2); OutT6 (v2); 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

OutT1 ON IND1_T1 (o3); 

OutT2 ON IND1_T2 (o3); 

OutT3 ON IND1_T3 (o3); 

OutT4 ON IND1_T4 (o3); 

OutT5 ON IND1_T5 (o3); 

OutT6 ON IND1_T6 (o3); 

[OutT1] (m3); [OutT2] (m3); [OutT3] (m3); [OutT4] (m3); [OutT5] (m3); [OutT6] (m3); 

OutT1 (v3); OutT2 (v3); OutT3 (v3); OutT4 (v3); OutT5 (v3); OutT6 (v3); 
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Alternative D – Effects Constrained to Equality Across Time Points and Profiles 

%OVERALL% 

I S | IND1_T1@0 IND1_T2@1 IND1_T3@2 IND1_T4@3 IND1_T5@4 IND1_T6@5; 

OutT1 ON IND1_T1 (o1); 

OutT2 ON IND1_T2 (o1); 

OutT3 ON IND1_T3 (o1); 

OutT4 ON IND1_T4 (o1); 

OutT5 ON IND1_T5 (o1); 

OutT6 ON IND1_T6 (o1); 

[OutT1] (m1); [OutT2] (m1); [OutT3] (m1); [OutT4] (m1); [OutT5] (m1); [OutT6] (m1); 

OutT1 (v1); OutT2 (v1); OutT3 (v1); OutT4 (v1); OutT5 (v1); OutT6 (v1); 

 

%C#1% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#2% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

%C#3% 

[I S]; 

I S; I WITH S; 

IND1_T1 IND1_T2 IND1_T3 IND1_T4 IND1_T5 IND1_T6; 

 

 
 


