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Exploratory structural equation modeling (ESEM) is a data analytic framework developed in 2009 by Tihomir 
Asparouhov and Bengt Muthén and implemented in the Mplus statistical software. ESEM extends the 
structural equation modeling (SEM) framework to incorporate latent factors defined according to exploratory 
factor analysis (EFA) specifications. The ESEM framework can thus incorporate different sets of EFA factors 
(a set corresponding to a series of indicators related to a series of factors with all cross-loadings freely 
estimated within this set, but not between sets), confirmatory factor analysis (CFA) factors (where factor 
indicators are used to define their a priori factors without the incorporation of all possible cross-loadings), 
and observed variables measured using any combination of continuous and categorical measurement scales. 
These factors and observed variables can be correlated with one another and/or related via regressions and 
incorporate a variety of methodological controls (e.g., method factors, correlated uniquenesses) in a way that 
can be extended to multiple-group analyses, longitudinal analyses, or a combination of both. 

ESEM makes available for EFA factors all of the statistical advances traditionally associated with CFA/SEM: 
(a) multiple-group or longitudinal tests of measurement invariance, (b) goodness-of-fit, (c) predictions among 
latent factors corrected for measurement error, (d) bifactor models, (e) a priori specification (i.e., confirmatory) 
using target rotation, (f) methodological controls, and (g) longitudinal analyses. This entry provides a review of 
how EFA and ESEM have been revived and answers questions about why it remains useful compared to CFA. 
Construct-relevant psychometric multidimensionality is then considered, followed by a concluding section on 
limitations of ESEM. 

Reviving EFA 

EFA, then referred to as factor analysis, was developed at the start of the 20th century by the pioneering 
work of psychologists, such as Charles Spearman, interested in understanding the structure of intelligence. 
EFA quickly became the approach of choice to study the underlying structure of the unobservable entities, 
referred to as psychological constructs, that form the core of psychological research. Many years later, in the 
1970s, Karl Jöreskog developed an alternative approach to factor analyses, CFA, which allowed researchers 
to explicitly rely on a priori expectations to define factors and to obtain goodness-of-fit information regarding 
the ability of this representation to appropriately reflect the underlying structure of the data. 

By merging path analytic methods with CFA, Jöreskog created a way to estimate predictive relations 
between CFA factors corrected for measurement errors, which came to be known as SEM. This new analytic 
framework rapidly superseded EFA, relegating its use to preliminary analyses of new measures for which 
a priori expectations were unclear, always with the caveat that these analyses should be replicated using 
CFA. ESEM revives EFA by making all of the advances traditionally reserved to CFA available to researchers 
interested in adopting an EFA approach. However, the apparent superiority of CFA is so well established that 
some questions regarding the true usefulness of EFA, and thus ESEM, remain. 

Cross-Loadings and Parsimony 

In CFA, all indicators are typically related to one, and only one, factor. However, research evidence has 
been accumulating for years that some well-established measures with a well-replicated EFA structure 
systematically fail to be supported using CFA. Statistical research has also demonstrated that whenever 
cross-loadings exist, CFA tends to produce inflated estimates of factor correlations, whereas the unnecessary 
incorporation of cross-loadings does not result in biased estimates. These inflated factor correlations carry 
the risk of creating unnecessary multicollinearity, leading to biased estimates of relations among constructs 
and to an underestimation of their construct validity. It remains true that adding all possible cross-loadings to 
a model reduces parsimony, which is why best-practice recommendations still favor CFA when both models 
have a comparable level of fit (particularly considering parsimony-adjusted indices) and factor correlations 
remain unchanged. 
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Reflective Models 

Since the revival of EFA via ESEM, some have expressed concerns that cross-loadings might change the 
meaning of the factors. However, this concern is unfounded, at least as long as cross-loadings remain smaller 
than the main loadings and aligned with theory, given the reflective nature of factor analyses. In a reflective 
model, causality flows downward: Factors are assumed to cause scores on the indicators. It logically follows 
that cross-loadings allow factors to be linked to all of the information available at the indicator level. For cross-
loadings to change the meaning of the factors, causality would need to flow backward. 

Methods Versus Objectives 

A final misunderstanding stems from the labels confirmatory and exploratory. Statistically, these labels only 
describe the methods, not their application, and refer to the idea that CFA assigns indicators to a single factor 
whereas EFA (and ESEM) freely estimates all factors-indicators associations. However, nothing precludes 
the use of any of these methods to address exploratory or confirmatory research objectives. Moreover, 
nonmechanical rotations procedures (i.e., target rotation) make it possible to estimate EFA (and ESEM) 
solutions using a priori specifications where loadings and cross-loadings can be given a target value (typically, 
loadings are freely estimated and cross-loadings are given a target value of 0, but alternatives are possible). 
In modern applications, ESEM is typically considered a viable approach for confirmatory and exploratory 
purposes and has been more frequently used for confirmatory purposes. 

Psychometric Multidimensionality 

Classical test theory proposes that any measure reflects three components: (1) random measurement error, 
which is absorbed into indicators’ uniquenesses in a factor analytic model, resulting in perfectly reliable 
factors; (2) construct-relevant variance, reflecting the extent to which each indicator is related to the construct 
it is assumed to represent and which is reflected by the main factor loadings in factor analyses; and (3) 
construct-irrelevant variance, reflecting the extent to which each indicator is related to constructs other than 
the one they were designed to measure. This last source of variation can take two forms. On the one hand, 
it could reflect something that is completely irrelevant to all of the latent constructs included in a model. This 
form of construct-irrelevant psychometric multidimensionality can be modeled using method factors (e.g., to 
control for informant effects, negative wording) or correlated uniquenesses (with two items sharing something 
over and above the various constructs included in the model). On the other hand, although irrelevant to the 
construct the indicator was designed to assess, this last source of variation could still be relevant to the other 
constructs included in the model. This form of construct-relevant psychometric multidimensionality can itself 
take two forms: 

When Constructs Are Related Conceptually 

When working with latent variables (e.g., EFA, CFA, SEM), many indicators are imperfect in that they 
often share associations with more than one latent construct. For example, a questionnaire item referring 
to insomnia might share valid relations with factors reflecting anxiety, depression, substance abuse, 
workaholism, and sleep difficulties. Observing cross-construct associations is frequent in questionnaires 
designed to assess multiple facets taken from the same domain (e.g., motivation, personality). Cross-
construct associations are independent from the clarity of the definition of the constructs themselves and 
do not need to be expected a priori. They simply reflect the fact that indicators naturally tend to share 
associations with more than one conceptually related construct. This type of construct-relevant psychometric 
multidimensionality is ignored in CFA, and best reflected via the incorporation of cross-loadings (EFA/ESEM), 
which allows all constructs to be estimated using all information present in the indicators. 

When Constructs Are Related Hierarchically 

Another source of construct-relevant psychometric multidimensionality comes from the fact that many 
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measures include items designed to measure distinct subscales (e.g., satisfaction of one’s need for 
autonomy, relatedness, and competence; or vocabulary, mathematical reasoning, and memory) from a 
hierarchically ordered global construct (e.g., global need satisfaction, global intelligence). Hierarchically 
ordered constructs have often been modeled using hierarchical factor models, where indicators are used to 
define first-order factors, themselves used to define a higher-order factor. Unfortunately, these models rely 
on a very strict assumption, which seldom holds in real life, according to which the ratio of global to specific 
variance is forced to be the same for all indicators linked with the same first-order factor. Bifactor models 
are more flexible and allow each indicator to simultaneously define their specific factor and the global factor, 
resulting in a direct partitioning of the variance into these two components. For both approaches (higher-order 
and bifactor), all factors are specified as orthogonal (i.e., uncorrelated with one another). 

For many psychological measures, both sources of construct-relevant psychometric multidimensionality are 
likely to be present and can be accounted for by simply including a bifactor component (or a higher order 
factor) to an ESEM measurement model. 

Limitations and Solutions 

Relative to SEM, ESEM still presents some limitations linked to the need to rely on factor rotation procedures 
to estimate a set of EFA factors. Thus, all EFA factors from the same set need to share the same relations with 
other constructs. Likewise, any constraints (e.g., measurement invariance) imposed on the factor loadings 
matrix, or on the latent variance-covariance matrix, have to be applied to the whole matrix, making tests 
of partial invariance of factor loadings and factor variances–covariances impossible. Furthermore, higher 
order ESEM models cannot be directly estimated. More broadly, whereas the SEM framework has been 
connected with multilevel analyses (allowing one to disaggregate relations occurring at different levels, such 
as individual, classroom, and school) and mixture modeling (allowing one to incorporate latent categorical 
variables, such as in latent profile analyses) as part of the generalized SEM framework, these connections 
are not yet available for ESEM. Many of the aforementioned limitations can, however, be circumvented using 
a variety of approaches. The two most common involve ESEM-within-CFA and factor scores. ESEM-within-
CFA involves the reexpression of an optimal ESEM solution in CFA using the parameter estimates from that 
final solution as start values (using * in Mplus). To achieve identification, one referent indicator has to be 
selected per factor (including the global factor in bifactor models), and all cross-loadings of this indicator have 
to be fixed to this start value (using @, rather than *, in Mplus). Factor variances also have to be fixed to 1, 
and factor covariances have to be fixed to 0 for bifactor ESEM models. For the estimation of higher order 
ESEM models, the main loading of the referent indicator also has to be fixed to its exact value, and factor 
variances have to be freely estimated. Alternatively, one could export factor scores from the ESEM or bifactor 
ESEM model for use in other analyses. Factor scores are not as robust to measurement error but provide a 
partial control for unreliability and preserve the measurement structure of the model. Although ESEM-within-
CFA is more accurate, it is also far less parsimonious and thus will not typically work in complex models 
(e.g., complex predictive models, mixture models, multilevel models) for which factor scores appear more 
appropriate. 

See also Classical Test Theory; Confirmatory Factor Analysis; Exploratory Factor Analysis; Measurement 
Invariance; Mplus (Software); Multiple Group Structural Equation Modeling; Psychometrics; Structural 
Equation Modeling 
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