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Abstract

Students in the same class can differ considerably in their perceptions of teaching quality, but little is known
about the drivers of this lack of agreement. In this study, we relied on within-class consensus as a measure
of agreement in students’ perceptions and explored both student-reported predictors (Sample 1) and teacher-
reported predictors (Sample 2) of consensus in students’ ratings of six goal structures dimensions (task,
autonomy, recognition, grouping, evaluation, time). Classroom-level results from multi-level models
indicated that student-perceived differential teacher treatment negatively predicted consensus regarding
evaluation, as well as achievement heterogeneity, whereas instructional clarity positively predicted
consensus for recognition, grouping, and evaluation, as well as class-average achievement (Sample 1).
Mediating effects of achievement heterogeneity and achievement were not statistically significant. In
Sample 2, negative effects of teacher-reported emotional exhaustion and teaching-related anxiety on
consensus were observed for several dimensions. Teaching-related enjoyment had no effect.

Keywords: Within-class consensus, goal structure, teaching quality, differential teacher treatment, teacher
emotion, emotional exhaustion, achievement
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CONSENSUS IN STUDENT’S PERCEPTIONS 1

In educational research, student surveys capturing aspects of teaching quality have become widely
used, both for research purposes and to guide educational practice and policy (e.g., as part of teacher
evaluation systems). Relying on student surveys to gain insights into teachers’ instructional practices seems
to be a worthwhile strategy, as students can offer unique information that is difficult to glean from other
sources (e.g., Schenke, Ruzek, Lam, Karabenick, & Eccles, 2018) and can be considered experts due to
their exposure to different teachers in different subjects over the course of their school careers (e.g.,
Clausen, 2002; De Jong & Westerhof, 2001). However, prior research suggests that students in the same
class who rate the same teacher tend to vary greatly in their perceptions (e.g., Bardach, Lftenegger,
Yanagida, Spiel, & Schober, 2019b; Schweig, 2017), so that most of the variance in students’ perceptions
exists within classes rather than across different classes (e.g., Kunter et al., 2008). This represents a major
dilemma, as both research on student-perceived teaching quality and practical applications such as the use
of student surveys to determine teacher effectiveness typically use class-level aggregates supposed to map
the shared perceptions of students from a given class (e.g., Ludtke, Robitzsch, Trautwein, & Kunter, 2009).
Hence, if (aggregated) student perceptions of teaching quality continue to be used in research and as policy-
relevant markers, it is imperative to learn more about within-class variability in students’ perceptions, and
to identify factors that drive this variability (see also e.g., Schenke et al., 2018; Schweig, 2016).

One way to approach within-class variability in students’ perceptions is to focus on the level of
agreement among students from the same class (within-class consensus, e.g., Liidtke, Trautwein, Kunter,
& Baumert, 2006; Schweig, 2016). While some empirical evidence has been obtained on factors related to
within-class consensus, such as educational track (Ludtke et al., 2006) or age (Gértner, 2010), our
knowledge of factors that influence consensus remains fairly limited, particularly in regard to (more)
malleable factors such as teachers’ instructional approaches, as well as in relation to teacher characteristics.
The present study aims to bridge this gap. Relying on goal structures as a theoretical framework to study
teaching quality, we investigated a range of factors potentially related to within-class consensus on the six
goal structure dimensions of task, autonomy, recognition, grouping, evaluation, and time (e.g., Ames, 1992;
Patrick, & Ryan, 2008) in mathematics classes. First, drawing on a large sample of secondary school
students (Sample 1), we examined student-perceived differential teacher treatment of higher vs. lower
achieving students (e.g., Rubie-Davies, 2007) and the clarity of teachers’ instruction (e.g., Hattie, 2012) as
two potential predictors of within-class consensus on goal structures ratings (e.g., Bardach, Yanagida,
Schober, & Luftenegger, 2018; Lidtke et al., 2006; Schweig, 2016). In addition to the direct effects of
differential teacher treatment and instructional clarity, we further explored whether () the relation between
clarity and consensus was mediated by class average achievement (e.g., Bardach et al., 2019b) and whether
(b) variability in achievement among students from the same class serves as a mediator of the relation
between differential teacher treatment and consensus. Second, we also explored the role of teacher
characteristics (Sample 2), such as teacher-reported emotional exhaustion (Maslach, Schaufeli, & Leiter,
2001; Seiz, Voss, & Kunter, 2015) and teaching-related emotions of enjoyment and anxiety (e.g., Frenzel
et al., 2016), in the prediction of within—class consensus. To complement the focus on student-reported
differential teacher treatment, we also considered teachers’ perceptions of student heterogeneity, especially
with regard to achievement (e.g., Skaalvik & Skaalvik, 2016).

Theoretical Framework: Goal Structures

Following previous research on within-class consensus (e.g., Bardach et al., 2018, 2019b), this
study assesses consensus in relation to goal structures. The concept of goal structures has evolved to
represent a comprehensive and application-oriented aspect of teaching quality (e.g., Bergsmann,
Liftenegger, Jostl, Schober, & Spiel, 2013). According to a recent meta-analysis (Bardach, Oczlon,
Pietschnig, & Liiftenegger, 2019), goal structures can encompass teachers’ policies and practices within a
learning environment that helps to make different achievement goals more or less salient, the goal-related
messages teachers explicitly communicate to their students, and the more general goal-related climate that
pervades a learning environment (see also Ames, 1992; Urdan, 2010). In the present study, we rely on a
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conceptualization of goal structures aligned with the first component of the above definition, referring to
specific sets of teachers’ practices and policies (Bardach, Oczlon et al., 2019; see also Ames, 1992; Benning
et al., 2019; Liftenegger, Tran, Bardach, Schober, & Spiel, 2017).

Nowadays, most researchers distinguish between three types of goal structures. In a mastery goal
structure, teachers emphasize the importance of learning, understanding, and trying hard, and emphasize
competence development as the main objective. In contrast, when a performance avoidance goal structure
prevails, teachers communicate to students that it is essential not to demonstrate lower performance than
their peers. Finally, a performance approach goal structure describes a classroom setting in which students
are valued for outperforming peers or showcasing their abilities (e.g., Midgley et al., 2000; Murayama &
Elliot, 2011; Miller & Murdock, 2007; Patrick, Kaplan, & Ryan, 2011; Schwinger & Stiensmeier-Pelster,
2011). Over the past 30 years, substantial information on these different types of goal structures and their
correlates has been accumulated. For instance, research has shown mastery goal structures to be most
beneficial for students, as indicated by associations with adaptive motivation patterns, positive emotions,
and positive student-teacher relationships (e.g., Baudoin & Galand, 2017; Liiftenegger, van de Schoot,
Schober, Finsterwald, & Spiel, 2014; Polychroni, Hatzichristou, & Sideridis, 2012). In contrast,
performance avoidance goal structures have been identified as being least adaptive for students, displaying
associations with a wide array of detrimental outcomes, such as maladaptive motivation patterns (e.g.,
Schwinger & Stiensmeier-Pelster, 2011). Conclusions are not as clear for performance approach goal
structures. Thus, whereas performance approach goal structures have been shown to mainly produce
maladaptive effects (e.g., Murayama & Elliot, 2009), benefits have also been reported (e.g., autonomous
motivation: Peng, Cherng, Chen, & Ling, 2013). Nonetheless, the present study focuses on mastery goal
structures, given the fact that such structures are unambiguously the most advantageous for students (for
reviews, see e.g., Bardach, Oczlon, et al., 2019; Meece et al., 2006; Urdan & Schonfelder, 2006).

In an attempt to identify core dimensions of instructional practices involved in the establishment
of a mastery goal structure, researchers have proposed the multi-dimensional TARGET framework, which
encompasses six dimensions (task, autonomy, recognition, grouping, evaluation, time). Task refers to the
design of tasks, which should be personally meaningful, challenging, and stimulate students’ curiosity to
learn more. Autonomy describes the involvement of students in decision-making regarding learning and
interpersonal issues, such as the establishment of classroom rules. Recognition practices include, for
instance, feedback and praise. The grouping dimension represents procedures used to group students, which
should be flexible and designed in a way that values and fosters cooperation. Evaluation refers to the
practices employed to assess and monitor students’ individual progress, rather than to compare students
with one another. Finally, time captures the use of time, such as devoting time to student questions or to in-
depth explanations (Ames, 1992; Epstein, 1988; Meece et al., 2006; Liftenegger et al., 2014; Liiftenegger
etal., 2017).

Within-Class Consensus on Teaching Quality

Methodologically, a focus on students’ evaluations of the quality of a teacher’s instruction
necessitates a multilevel representation to allow teaching quality to be modelled as a feature that varies
between classes (e.g., Ludtke et al., 2009). The units of interest are the ratings of individual students within
each class, aggregated to the classroom level to represent students’ shared perceptions of teaching quality.
However, if we treat the class as the unit of analysis, then there should be overlap among the perceptions
of those comprising this unit, i.e., the students within a class. As they all rate the same classroom teacher
(or another classroom feature and thus the same target), their mental representation of this target should
share at least some similarities (Marsh et al., 2009; Marsh et al., 2012; Morin, Marsh, Nagengast, & Scalas,
2014). Specifically, sufficient overlap in perceptions of teaching quality, which can be quantified by
consensus measures, has been discussed as a precondition to the aggregation of individual student ratings
at the classroom level. As such, several researchers highlight the need to consider consensus when
investigating teaching quality and other group-level phenomena (e.g., Lidtke et al., 2006; Nelson & Christ,
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2016). In prior studies of within-class consensus focusing on goal structures and using the same measure
of consensus as those used in the present investigation, within-class consensus was generally found to vary
from weak (r*wg@) > .30) to moderate (r*wgg) > .50) (see Bardach et al., 2018, 2019b; Bardach, Liiftenegger,
Yanagida, Schober, & Spiel, 2019a). This begs the important question of what contributes to higher or
lower levels of consensus.

Nevertheless, our knowledge about factors that potentially shape the presence of consensus in
student ratings is rather limited®. There is thus a need for studies exploring such factors in order to expand
existing knowledge and provide evidence that could benefit both research and educational practice/policy.
For example, in educational practice, it is typically advantageous to identify teachers who receive high or
low teaching quality ratings for feedback and development purposes. In such settings, it might also be
relevant to understand whether the students assigning these ratings agree in their perceptions, as differing
levels of agreement could arise for substantial reasons. For instance, a low level of consensus could indicate
that a teacher is not very successful at meeting the individual needs of the various students forming the
class (e.g., Ludtke et al., 2006).

Factors Related to Within-Class Consensus

Factors that potentially influence consensus can be grouped into at least three categories, namely
(aggregated) student characteristics, classroom/school characteristics, and teacher characteristics. To date,
several studies have investigated how consensus regarding the assessment of different classroom features
is related to (aggregated) student characteristics or classroom/school characteristics. For example, Gartner
(2010) showed that class size and subject had no substantial impact on students’ consensus on instructional
quality. Findings regarding differences between academic tracks are more inconsistent. Thus, Liidtke and
colleagues (2006) reported higher consensus regarding instructional quality for Gymnasium schools, i.e.,
the highest track school in Germany. In contrast, a later study conducted in Germany found no such
differences (Gértner, 2010). With regard to student characteristics, Gartner’s (2010) results indicated that
consensus might increase with students’ age. Several studies have also looked at relations between
aggregated levels of achievement and consensus on instructional quality (e.g., Schweig, 2016; Wittwer,
2009) and goal structures (Bardach et al., 2018; Bardach et al., 2019b), and have generally reported positive
associations between achievement and consensus.

In sum, some evidence exists regarding factors that might influence consensus. However, so far,
research conducted in this area has mainly focused on student characteristics (e.g., achievement, age) or
classroom/school characteristics (e.g., class size, academic track). Potential effects of teacher-related
factors, assessed both from the student and teacher perspective, have remained largely unexplored. This is
surprising given that teachers’ characteristics and behaviors are likely to play a major role in driving
consensus on students’ perception of their own practices. In the present study, we turn our attention to two
types of teacher-related factors: (a) students’ perception of their teachers’ instructional practices and
differential treatment of students, and (b) teachers-rated characteristics and perceptions of their students.
Teachers’ Approaches to Instruction and Treatment of Students

Teachers are key in establishing the goal structures within a classroom; hence, variability in
students’ perceptions may also be affected by what teachers do in class and how they interact with students
and different groups of students. First, it has been proposed that clarity of instruction (e.g., Hattie, 2012)
might be associated with greater within-class consensus (e.g., Bardach et al., 2018). More precisely, in
classes where students receive relatively unambiguous messages, it is more likely that these messages will
be perceived and interpreted in a more homogeneous manner, leading to more similar or overlapping mental
images of what happens in class among students. Furthermore, instructional clarity itself has been shown

! Although methodological advancements, such as doubly latent multi-level structural equation models, correct
for disagreement among students regarding teaching quality at the classroom level as part of the latent
aggregation process (e.g., Morin et al., 2014), they do not address potential sources of (dis-)agreement.
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to be often accompanied by higher levels of teacher immediacy and perceived relevance of information
among students (e.g., Mottet et al., 2008), two elements that could themselves increase consensus among
students. Thus, if the teacher communicates his or her positive affect to students (teacher immediacy), and
if the content of the lessons matters for students (perceived relevance of information), students are more
likely to pay attention to the teacher, which is a precondition for instructional clarity to unfold its effects on
consensus. Conversely, low clarity of instruction might confuse and demotivate some students, whereas
others might still be able or willing to follow teachers’ instruction for a variety of other reasons (e.g.,
importance or interest in the course content), leading to differences in students’ perceptions of what happens
in the classroom. In addition, even students who try to follow teachers’ explanations might find it difficult
to stay focused if the clarity of instruction is low, which could add “noise” to students’ perceptions and
further hamper consensus.

Moreover, teachers can also differ in the instructional approaches they employ for higher vs. lower
achieving students (differential teacher treatment, Zhu, Urhahne, & Rubie-Davies, 2018), which might lead
to heterogenous perceptions of instruction between students depending on their achievement level, and thus
to lower within-class consensus (e.g., Bardach et al., 2018; Schenke et al., 2017; Schweig, 2016). It is
important to note that for our work we follow a conceptualization of differential teacher treatment as
entailing maladaptive teacher behavior (see also e.g., Rubie-Davies, 2007). Therefore, in this study, our
representation of differential teacher treatment differs from other adaptive approaches that sometimes also
fall under the same label (e.qg., tailoring instruction to the differing needs of individual students, providing
personalized learning support, see e.g., Nurmi & Kiaru, 2015). Our conceptualization of differential teacher
treatment is rather embedded in a theoretical tradition of research focusing on the effects of teacher
expectancies, which stems from Rosenthal and Jacobson’s (1968) seminal Pygmalion effect. From a
theoretical perspective, teachers are expected to form different expectations in relation to different students.
These expectations can be based on students’ prior achievement levels or individual characteristics, as well
as on any other impressions a teacher can form through interacting with these students. These differential
expectations then translate into a differential treatment of students expected to function or perform better
or more poorly, leading teachers to offer more attention and support to students expected to perform more
favorably. These differential expectations thus lead to unequal learning opportunities via which students
expected to perform better come to be exposed to more favorable learning environments than students
expected to perform more poorly, which confirms teachers’ initial expectations (e.g., Rubie-Davies, 2007;
Jussim, 2009; see also e.g., Gentrup, Lorenz, Kristen, & Kogan, 2020). In our study, we restrict our focus
to differential teacher treatment, as this specific teacher behavior could be useful in explaining consensus.
If teachers treat some students in a class, i.e., the higher achiever, better than other students (i.e., lower
achievers), then consensus should be lower: Those students receiving favorable treatment should provide
more favorable ratings of the class environment than their peers who were treated more poorly.

Potential Mediators of the Effects of Instructional Clarity and Differential Teacher Treatment

To achieve a more complete understanding of the mechanisms involved in the effects of
instructional clarity and differential teacher treatment on consensus, we consider two moderators. First, the
role of instructional clarity as a driver of consensus might be partially mediated by achievement. On the
one hand, instructional clarity has been shown to facilitate student learning and achievement (Hattie, 2012;
Titsworth, Mazer, Goodboy, Bolkan, & Myers, 2015). In their meta-analysis, Titsworth and colleagues
(2015) summarize prominent theoretical perspectives explaining the effect of clarity on learning and
achievement. Early research on teacher clarity was dominated by information-processing theory (e.g.,
Mayer, 1996), viewing teachers as distributors of information and learners as information processors.
Higher clarity should contribute to student learning by enabling them to better manage, store, process, and
retrieve information. Other researchers have complemented this view by suggesting that teachers adapt their
clarity to students through communication. Hence, clarity becomes a process of communication where
meanings are reciprocally negotiated (e.g., Civikly, 1992; see Titsworth et al., 2015 for more details),
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creating a space for sense making and high-quality learning that promotes achievement. On the other hand,
higher class-average achievement has itself been consistently shown to predict higher consensus (e.g.,
Bardach et al., 2019b; Schweig, 2016), because higher achieving students (i.e., those who possess more
subject-related knowledge) might be able to more accurately describe their classroom functioning, and thus
to provide more homogenous ratings (e.g., Wittwer, 2008). It therefore seems plausible to positions
achievement as a possible mediator of the relation between instructional clarity and consensus.

Second, the role of differential teacher treatment as another, negative, predictor of consensus could
itself be partially mediated by the level of heterogeneity in the achievement of students from the same
classroom. More precisely, better treatment generally translates into higher achievement for students able
to benefit from this more positive treatment, whereas the opposite is true for students exposed to less optimal
forms of treatments (e.g., Wang, Rubie-Davies, & Meissel, 2018). For this reason, differential treatment
should contribute to increase the variability of student achievement in the class, leading to an increasing
gap in students’ levels of achievement. Just like we were able to assume that higher levels of achievement
should help increase consensus in classroom perceptions, greater achievement variability should similarly
serve to decrease consensus.

Teacher Features and Teachers’ Perceptions of Students

Whereas investigating students’ perceptions of teacher-related factors would represent a crucial
extension of existing work on potential predictors of consensus, it is arguably equally critical to consider
teachers’ own perspectives. First, if the constructs assessed from the perspective of the teacher share
similarities with the constructs assessed from the student perspective, it becomes possible to develop a more
comprehensive understanding of the phenomena under study in a way that encapsulates the perspective of
these two important types of informants. In the present study, we focus on teachers’ perceptions of student
heterogeneity, particularly in terms of achievement. These perceptions would serve as an important
complement to students’ perceptions of differential teacher treatment based on achievement in the
prediction of within-class consensus. Ideally, teachers should equally support all students, irrespective of
their background and achievement levels. However, this might be difficult to achieve in a class where
students differ a lot, particularly if we account for the fact that teachers are typically under substantial
pressure to cover all components of the class curriculum within a limited time frame. Hence, asking teachers
about their perceptions of the student heterogeneity could provide a more nuanced view on why some
teachers might fail to equally support all students, with potential consequences for consensus in students’
perceptions.

Second, following the rich line of research concerned with teachers’ characteristics and their effects
on students (e.g., Barr, 1957; Keller, Hoy, Goetz, & Frenzel, 2016; Zee & Koomen, 2016), a further critical
question becomes whether specific teacher characteristics influence consensus. Relative to students’
characteristics or students’ perceptions of teachers’ practices and behaviors, teacher characteristics are
distal factors in relations to students’ perceptions, particularly if the teachers themselves provide the ratings.
However, these factors also have the advantage of being arguably more directly under the control of the
teachers from an intervention perspective. Finding that these more distal factors are able to influence
variability in students’ perception of instruction would add a new layer to current knowledge regarding the
key drivers of consensus, as well as to our knowledge regarding the impact of teacher’ characteristics on
students. Current conceptions of teaching quality understand classroom processes as a complex interplay
between teachers’ “offers” in terms of specific instructional strategies and students’ uptake on, and reactions
to, these strategies, resulting in a dynamic interaction process whereby each actor influences the other. Both
teacher’ “offers” and the uptake of these “offers” by students are furthermore affected by the characteristics
teachers and students bring to the situation and develop (e.g., Creemers, Kyriakides, & Antoniou, 2013;
Gollner et al., 2018; Seidel, 2006). Specific teacher features have been found to affect students’ perception
of the quality of instruction—probably because they enable teachers to provide high-quality “offers” to
students or because they enhance teachers’ ability to create conditions that help students to fully benefit
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from quality instruction. We expand on this by suggesting that the variability of perceptions of instruction
should also be prone to influences of teacher features, potentially operating on different levels: As such,
teacher features might affect the “use”-side, e.g., in that they hamper teachers’ provision of consistent
instructional support. They might also indirectly impact on the willingness of some groups of students to
make use of learning opportunities and teachers’ “offers”, e.g., because these teacher features contribute to
creating a distance between teachers and some (more sensitive) students. In the present study, we focus on
the role played by teachers’ levels of emotional exhaustion, enjoyment and anxiety.

Teachers’ emotional exhaustion has previously been linked to students’ perception of instructional
quality (for empirical studies see e.g., Klusmann, Kunter, Trautwein, Liudtke, & Baumert, 2008; Kunter et
al., 2008; Shen et al., 2015; Wong, Ruble, Yu, & McGrew, 2017; see also e.g., Chang, 2009; Maslach &
Leiter, 1999). However, insights on whether emotional exhaustion might also predict consensus on
instruction is still lacking. Nonetheless, the instructional practices, such as goal structures, of teachers who
feel emotionally drained might be less consistent over time and across students, which could in turn
negatively affect student’s shared image of these practices.

Likewise, ample research has been conducted on the relevance of specific teaching-related
emotions, such as enjoyment and anxiety (e.g., Frenzel et al., 2016; Seiz et al., 2015) for the prediction of
a variety of student and teacher outcomes. Importantly, teachers’ enjoyment (e.g., Frenzel, 2014), has been
found to affect students’ ratings of teachers’ instruction (e.g., Frenzel, Goetz, Stephens, & Jacob, 2009),
but has never been studied in relation to students’ consensus regarding instructional quality. However,
teachers’ enjoyment typically goes along with enthusiasm (e.g., Frenzel, Goetz, Lidtke, Pekrun, & Sutton,
2009; Keller et al., 2019; Kunter et al., 2008), and enthusiastic teachers might be better able, or willing, to
reach out to a majority of students within their class, thus creating a more similar mental image of teaching
quality among students. In contrast, teaching-related anxiety could interfere with the establishment of
consensus, as heightened self-consciousness stemming from anxiety might divert a teacher’s attention from
instruction, leading to the communication of more ambiguous messages to students (e.g., Coates &
Thoresen, 1976; see also e.g., Chang, 2009; Frenzel et al., 2016).

Research Goals and Hypotheses

The present research seeks to improve our understanding of what drives within-class consensus in
students’ perceptions of teaching quality. Relying on a large sample of secondary school students (Sample
12), we assumed that higher levels of student-perceived instructional clarity will positively predict
consensus (Hypothesis 1a-f), and that higher levels of student-perceived differential teacher treatment will
negatively predict consensus (Hypothesis 2a-f) regarding the six goal structures dimensions task, autonomy,
recognition, grouping, evaluation, and time. We further hypothesized that higher class-average levels of
achievement will mediate the association between instructional clarity and consensus (Hypothesis 3a-f),
and that higher levels of within-class variability in achievement levels will mediate the relation between
differential teacher treatment and consensus (Hypothesis 4a-f). In addition, class-average levels of
achievement will also be directly, and positively, related to consensus (Hypothesis 5a-f), whereas
achievement heterogeneity will also be directly, and negatively related to consensus (Hypothesis 6a-f).
Finally, we expected instructional clarity to positively predict class-average levels of achievement
(Hypothesis 7), and differential teacher treatment to positively predict achievement heterogeneity
(Hypothesis 8).

In Sample 2, we focused on the role of teacher characteristics, and assumed that teachers’
perceptions of student heterogeneity, as well as their self-reported feelings of emotional exhaustion and
anxiety, will negatively predict consensus (Hypotheses 9a-f, 10a-f, and 11a-f, respectively). Likewise, we

2 As explained in the method section, Sample 1 and Sample 2 partially overlap, because Sample 2 included
teacher data for some but not all of the classes used in Sample 1. We use the terms ‘Sample 1° and ‘Sample 2’ to
avoid unnecessarily lengthy descriptions, but emphasize that these two samples are not independent.
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also hypothesized their feelings of enjoyment to positively predict consensus (Hypothesis 12a-f). As age
has been found to be related to consensus (Gértner, 2010), we included school grade as a control variable
in all analyses. Figure 1 gives an overview of the hypotheses tested in this study (hypotheses for sample 1
in the upper part, hypotheses for sample 2 in the lower part).

Method
Samples and Procedures

The current studies were carried out as part of a larger research project focused on (social)
motivation among Austrian secondary school students’ (Authors, 2018, 2019, 2020 [blinded for peer
review]). Students were recruited within Austrian secondary schools (Gymnasium) to participate in this
study. Gymnasium schools are the highest track of secondary schools in Austria. Sample 1 comprised 1,743
students (mean age of = 14.38 years, SD = 1.41 years, 53.8% females) from 89 mathematics classes®. Of
those students, 28.9% were in Grade 7, 27.9% were in Grade 8, 20.1% were in Grade 9, 11.4% were in
Grade 10, and 11.8% were in Grade 11. The number of students per teacher ranged from 10 to 29.

For a sub-sample of 37 classes, we also gathered teacher data from their respective mathematics
teachers (Sample 2). These 37 teachers (48.6% female) were 49.33 years old on average (SD = 12.31) and
had, on average, 24.23 years (SD = 12.34) of teaching experience. The corresponding classes (37 classes
with a total of 726 students, 11 to 27 students per teacher) also included students from all grade levels
(Grade 7: 35.0%; Grade 8 = 27.3%; Grade 9: 18.9%; Grade 10: 10.6%; Grade 11: 8.3%). These students
were 14.19 years old on average (SD = 1.38), and 51.4% were females.

Participating students and teachers responded to paper-and-pencil questionnaires during regular
classroom hours, supervised by trained research assistants. All students and teachers participated
voluntarily in this study. For students, active parental consent was required. The consent rate was above
99%, and, as such, less than 1% of students were not allowed to participate by their parents or directly
refused to participate. No compensation for participation was provided.

Measures: Students’ Reports

All student variables referred to mathematics and to the class’s mathematics teacher. Whereas the
items assessing students’ perceptions of the six dimensions of mastery goal structures were used to calculate
consensus levels regarding the six dimensions (see ‘Analysis’) for Sample 1 and Sample 2, the other student
scales were only employed in the analyses relying on Sample 1, which focused on student-reported
predictors of consensus. A 6-point Likert scale ranging from 1 (strongly disagree) to 6 (strongly agree) was
used as the response format for all student scales.

Six dimensions of mastery goal structures. Mastery goal structures were measured with items from
the Goal Structure Questionnaire (GSQ, Luftenegger et al., 2017). Students were reminded to think about
mathematics and about their current mathematics teachers when answering the items, which began with the
phrase ‘In mathematics class, ...". Five items measured task, (e.g., °...we should set learning goals for
ourselves’; osampler = .66; osamplez = .63), Six items measured autonomy (e.g., ‘...we make important
decisions about the learning process together with the teacher’; dsampler = .84; Osamplez = .84), Six items
measured recognition (e.g., ... we get feedback concerning our learning progress’; osampler = .81; Olsample2 =
.81), four items measured grouping (e.g., ‘...we can work on tasks together with classmates if we want’;
Osampler = .73; dsamplez = .71), SiX items measured evaluation (e.g., ‘... the teacher points out when someone
has improved’; osampler = .85; osample2 = .85), and five items measured time (e.g., ‘...the teacher makes
enough time for explanations’; disampler = .82; disample2 = .81).

Instructional clarity. To gauge instructional clarity, we relied on items based on Chesebro and
McCroskey (1998). Five items were used (e.g., “In mathematics class, the teacher gives us clear,

3 As our work focus on within-class consensus, and as clusters of at least 10 raters (here: students) have been
recommended for the consensus measure used (r*wgy); see the Analyses section; Lindell, Brandt, & Whitney,
1999), we only included classes including at least 10 participants for analyses.
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unambiguous instructions’; a = .85).

Differential teacher treatment. We measured differential teacher treatment with five items
developed for purposes of this study based on a consultation of the research literature on differential
treatment (e.g., Rubie-Davies, 2007; Zhu et al., 2018). The items focused specifically on students’
perceptions of their teachers’ behavior in mathematics class (e.g., ‘In mathematics class, the teacher treats
higher and lower achieving students differently’; o = .83).

Achievement. Teacher assigned mathematics grades taken from the students’ most recent report
card were used as indicators of achievement. In the Austrian school system, ‘1’ represents the best grade
and ‘5’ the lowest grade. Thus, analyses were carried out after recoding grades so that higher values reflect
higher achievement.

Achievement heterogeneity. To reflect within-class achievement heterogeneity, we used the
standard deviation of the class average achievement, yielding one ‘achievement heterogeneity index’ for
each class.

Measures: Teachers’ Reports

The measure of emotional exhaustion referred to teachers’ job more generally, whereas the other
measures focused on teaching mathematics in the specific class for which we also gathered student data.
All teacher-reported measures were rated using a 6-point Likert scale, ranging from 1 (strongly disagree)
to 6 (strongly agree).

Emotional exhaustion. We assessed emotional exhaustion using items based on the German
version (Enzmann & Kleiber, 1989) of the Maslach Burnout Inventory (Maslach, Jackson, & Leiter, 1996).
Four items were employed (e.g., ‘T often feel exhausted due to my job as a teacher’, o= .91).

Teachers’ enjoyment and anxiety. Teachers emotions in terms of enjoyment and anxiety when
teaching mathematics in this specific class were measured using scales developed by Frenzel and colleagues
(2016). Four items referred to enjoyment (e.g., ‘In general, I enjoy teaching this class in mathematics’, o =
.86). Anxiety was measured with four items (e.g., ‘I generally feel tense and nervous when teaching this
class in mathematics’; o = .88).

Teacher perceptions of student achievement heterogeneity. To assess teachers’ perceptions of the
achievement-related heterogeneity of students in their class, we employed items adapted from Skaalvik and
Skaalvik (2016). Four items were used (e.g., ‘In this class, there is a huge difference between the best and
the poorest students’; o = .86).

Analyses

The analyses were performed with Mplus Version 8.2 (Muthén & Muthén, 2017) using the robust
maximum likelihood estimator (MLR). To deal with missing data present at the item level (between 0%
and 5.9% for student scales, and between 0% and 5.4% for teacher scales), full information maximum
likelihood estimation (FIML) was employed (Enders, 2010).

As a measure of within-class consensus regarding the six mastery goal structures dimensions, we
used the inter-rater agreement index for multiple items, r*ug@). The continuous measure of agreement r*ug)
was developed by Lindell and colleagues (Lindell & Brandt, 1997; Lindell et al., 1999) and represents an
inverse linear function of the ratio of the average obtained variance to the variance of uniformly distributed
random error (Lindell et al., 1999). In the case of six response categories, r*uqg can range between -1.14
and 1, with higher values representing greater within-classroom consensus. Moreover, a positive r*ugq
value indicates that consensus within a group is stronger than would be expected by chance, whereas a
negative r*yg() value indicates that consensus is less than would be expected by chance (Lindell et al. 1999).
Mwg() IS a correlation coefficient. Hence, Fisher’s z-transformations were applied to all r*ugg values prior
to using them in the analyses described below (although no value lower than -1 was observed in the present
study, such values would have to be recoded to -1 prior to this transformation).

Preliminary Measurement Models
A multilevel confirmatory factor analytic model (ML-CFA) including all constructs (instructional
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clarity, differential teacher treatment, the two mediators of achievement and achievement heterogeneity,
consensus regarding the six goal structures dimensions, and the control variable grade) was first estimated
to verify the adequacy of the measurement model underlying all constructs and to assess cross-level metric
invariance in measurement. Cross-level tests of metric invariance are necessary to ensure comparability of
measurement across levels and, when supported, contribute to the efficiency and accuracy of multilevel
analyses by introducing greater parsimony in the estimated models (e.g., Liidtke et al., 2011; Marsh et al.,
2009; Morin et al., 2014). Prior to estimation, all variables were standardized to enhance interpretability
and limit non-essential multi-collinearity (Arens, Morin, & Waterman, 2015; Marsh et al. 2012; Morin et
al. 2014). The ML-CFA was first estimated freely at both levels and then re-estimated with invariant factor
loadings across levels (i.e., metric invariance).

We assessed the goodness of fit for all models using the comparative fit index (CFl), the Tucker-
Lewis Index (TLI) and the root mean square error of approximation (RMSEA). Typical cut-off scores taken
to reflect excellent and adequate fit to the data, respectively, were considered, namely (a) CFl and TLI >
.95 and .90; (b) RMSEA < .06 and .08 (e.g., Hu & Bentler, 1999). For tests of metric invariance, models
were contrasted considering that drops in CFl or TLI > .01 and increases in RMSEA > .015 can be used to
reject the invariance hypothesis (e.g., Chen, 2007; Cheung & Rensvold, 2002).

Analyses of Student-Reported Predictors (Sample 1)

To investigate the effects of differential teacher treatment and instructional clarity and the
mediating effects of achievement and heterogeneity in achievement, we estimated a multilevel structural
equation model (ML-SEM) building upon the aforementioned ML-CFA model of metric invariance
(Ludtke, Marsh, Robitzsch, & Trautwein, 2011; Marsh et al., 2009; Marsh et al., 2012; Morin et al., 2014).
In this model, the multiple items assessing differential teacher treatment and instructional clarity completed
by the students were used to define latent factors at the student level (L1; reflecting inter-individual
differences in student perceptions) and the class level (L2; reflecting aggregated class perceptions). We
assessed students’ mathematics achievement with a single indicator at L1 and aggregated it to L2 using a
latent aggregation process in order to obtain an indicator of class average achievement. As a measure of the
class-level achievement heterogeneity, we used the standard deviation of mathematics achievement within
each class, yielding one value for each class that differed between but not within classes. This manifest
heterogeneity measure was included at L2 in the ML-SEM. Consensus is also a naturally L2 construct, so
consensus for the six mastery goal structures dimensions was entered at L2 in the ML-SEM. In these
models, differential teacher treatment and instructional clarity were automatically group-mean centered as
part of the ML-SEM estimation procedure, whereas the L2 variables (consensus on the six dimensions,
achievement heterogeneity) were grand-mean centered (Marsh et al., 2012; Morin et al., 2014).

As age has been found to be related to consensus (Gartner, 2010), we included grade-level as a
control variable at L2. We then regressed consensus on the six mastery goal structures dimensions on
differential teacher treatment and instructional clarity and additionally tested for partial mediation of the
former (with achievement heterogeneity as mediator) and latter (with achievement as mediator) relations.
It should be noted that bootstrapping (the recommended approach for tests of mediation) are currently not
implemented for ML-SEM in Mplus 8.2. Therefore, in order to test indirect effects, the distribution of
product method (MacKinnon, Fritz, Williams, & Lockwood, 2007) was used to compute 95% asymmetric
confidence intervals in R version 3.6.2 (R Core Team, 2019) using the package RMediation version 1.1.4
(Tofighi & MacKinnon, 2011). This method considers the correct distribution of the product term instead
of assuming a normal distribution or applying an approximation method. Simulation studies have shown
that the distribution of product method performs well as compared to bootstrapping (e.g. Preacher & Selig,
2012). Figure 2 displays the ML-SEM investigated in this study.

Analyses of Teacher-Reported Predictors (Sample 2)

To examine the effects of teacher-reported factors (emotional exhaustion, enjoyment, anxiety,

achievement heterogeneity) on consensus, we relied on a manifest single level (i.e., estimated at the
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classroom level) path analytic model, due to the considerably smaller sample size (37 classes with teacher
data). Hence, manifest mean scores capturing teachers’ levels of emotional exhaustion, enjoyment, anxiety,
and perceptions of achievement heterogeneity were used as predictors. All of these predictors were grand-
mean centered. As in Sample 1, consensus scores regarding all six mastery goal structures dimensions were
included as outcomes. Once again, we controlled for the effects of school grade on consensus regarding all
mastery goal structures dimensions.
Results

Preliminary Analyses

Multi-level modeling with variables that are entered at both levels requires the presence of
variability at L2. This can be determined by calculating the intraclass correlation coefficient, ICC(1).
Ideally, ICC(1) are close to or higher than .10 (Ludtke et al. 2008, 2011; see also Arens et al. 2015). In
Sample 1, ICC(1) values were high for instructional clarity (.45) and differential teacher treatment (.37),
but lower for achievement (.04). An additional consideration is related to the reliability of the L2 aggregates
(i.e., inter-rater agreement in ratings of the L2 construct). Reliability of the L2 aggregates is measured with
the 1ICC(2), which can be interpreted just like other reliability measures (Ludtke et al. 2009; Marsh et al.
2012). ICC(2) values in Sample 1 were high for instructional clarity (.94) and differential teacher treatment
(.92), and, again, lower for achievement (.45). Importantly, doubly latent ML-SEMSs, such as those used in
Sample 1, are naturally controlled for this source of measurement error as part of the latent aggregation
process (Arens et al. 2015; Marsh et al. 2012; Morin et al. 2014). Table 1 reports ICC(1) and ICC(2) values
for Sample 1. Note that all variables for the analyses for Sample 2 were only located at the classroom level,
meaning that ICC values could not be calculated.

In this study, mean within-class consensus values (i.e., r*wg@) values) for the six dimensions ranged
between .45 and .54 (Sample 1) and between .44 and .52 (Sample 2). Common interpretation guidelines
suggest that values above .30 indicate weak consensus, values above .50 indicate moderate consensus,
values above .70 indicate strong consensus, and values above .90 indicate very strong consensus (LeBreton
& Senter, 2008). Thus, consensus values observed in this study reflect a generally moderate amount of
consensus. The values in our study were on average higher than the consensus values found in previous
studies using the same consensus measure and focusing on goal structures, which typically reflected weak
to moderate levels of consensus (e.g., Bardach et al., 2018, 2019b). Table 1 provides descriptive information
(means and standard deviations for all variables used in the analyses), and correlations among all variables
for Sample 1. Table 2 provides the same information for Sample 2. Tables S1 (Sample 1) and S2 (Sample
2) of the online supplements shows the proportion of r*,gg values corresponding to each of the proposed
cut-offs in the literature.

Preliminary Measurement Models (Sample 1)

We estimated a ML-CFA for Sample 1 to verify the adequacy of the measurement model and to
test cross-level metric invariance (e.g., Morin et al., 2014). The results from these analyses are reported in
Table 3 and support the adequacy of the measurement model, as well as its cross-level metric invariance.
This model was thus used to set-up the ML-SEM predictive model, which was also able to achieve a
adequate level of model fit (see Table 3). Table S3 in the online supplements reports the standardized factor
loadings at both levels for the multiple-item measures differential teacher treatment and instructional
clarity.

Student-Reported Predictors (Sample 1)

Effects of differential teacher treatment and instructional clarity on consensus. Instructional
clarity did not significantly predict consensus regarding task (Hypothesis 1a, § = 0.16, p = .177) and
autonomy (Hypothesis 1b, = 0.22, p =.105). However, the results revealed significant and positive effects
of instructional clarity on consensus regarding recognition (Hypothesis 1c, f = 0.26, p = .049), grouping
(Hypothesis 1d, = 0.35, p = .033) and evaluation (Hypothesis 1d, f = 0.39, p = .002). Instructional clarity
was not significantly related to consensus regarding time (Hypothesis 1f, § = 0.14, p =.236). No statistically
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significant effects emerged for differential teacher treatment predicting consensus regarding task
(Hypothesis 2a, p=-0.19, p =.143), autonomy (Hypothesis 2b, f=-0.16, p =.217), recognition (Hypothesis
2c, p=-0.23, p = .088), grouping (Hypothesis 2d, § = 0.24, p = .851), and time (Hypothesis 2f, § =0.22, p
= .872). Differential teacher treatment significantly and negatively predicted consensus regarding
evaluation (Hypothesis 2e, f = -0.33, p = .014). All effects are shown in Table 4. In addition, Figure 3
provides a graphical representation of the effects found for instructional clarity and differential teacher
treatment.

Effects of achievement and achievement heterogeneity on consensus. As shown in Table 4,
achievement did not statistically significantly predict consensus regarding the six mastery goal structures
dimensions (Hypotheses 5a-f, B’s ranging between -0.29 for grouping and 0.18 for task, p’s ranging between
139 and 913). Likewise, achievement heterogeneity did not statistically significantly predict consensus
regarding the six mastery goal structures dimensions (Hypotheses 6a-f, B’s ranging between
-0.15 for grouping and 0.07 for evaluation, p’s ranging between .088 and .870).

Effects of differential teacher treatment and instructional clarity on achievement and
achievement heterogeneity. Instructional clarity significantly and positively predicted achievement
(Hypothesis 7, p = 0.07, p = .020), and differential teacher treatment significantly and positively predicted
achievement heterogeneity (Hypothesis 8, B = 0.24, p =.005).

Mediating effects of achievement and achievement heterogeneity. Achievement did not
significantly mediate the effects of instructional clarity on consensus regarding task (Hypothesis 3a, 0.12,
p =.158), autonomy (Hypothesis 3b, 0.02, p = .408), recognition (Hypothesis 3c, -0.03, p = .603), grouping
(Hypothesis 3d, -0.19, p = .857), evaluation (Hypothesis 3e, -0.01, p = .551), and time (Hypothesis 3f, -
0.11, p = .845). Similarly, achievement heterogeneity did not significantly mediate any of the effects of
differential teacher treatment predicting consensus (Hypothesis 4a for task: 0.04, p = .363; Hypothesis 4b
for autonomy: -0.05, p = .653; Hypothesis 4c for recognition: 0.12, p = .142; Hypothesis 4d for grouping: -
0.15, p = .834, Hypothesis 4e for evaluation: 0.07, p = .258, Hypothesis 4f for time: -0.13, p = .863). All
mediating effects including confidence intervals can be consulted in Table 4.

Effects of Grade Level (control variable). Grade did not significantly predict consensus regarding
any of the mastery goal structures dimensions (B’s ranging between -0.07 for recognition and 0.19 for time,
p’s ranging between .056 and .959, see Table 4 for all coefficients).

Teacher-Reported Predictors (Sample 2)

In the MLM, teachers’ perceptions of student heterogeneity were not significantly related to
consensus regarding task (Hypothesis 9a, = 0.02, p = .574), autonomy (Hypothesis 9b, p = -0.20, p =
.076), recognition (Hypothesis 9c, B =-0.17, p =.117), grouping (Hypothesis 9d, p = -0.05, p = .368), and
time (Hypothesis 9f, p = -0.02, p = .404). A significant effect emerged for the evaluation dimension, with
teacher perceived student heterogeneity being negatively related to consensus regarding evaluation
(Hypothesis 9e, p =-0.41, p < .001). Emotional exhaustion negatively predicted consensus regarding task
(Hypothesis 10a, g = -0.46, p = .020) and autonomy (Hypothesis 10b, B = -0.34, p = .006), while none of
the other effects for emotional exhaustion attained statistical significance (Hypothesis 10c for recognition:
B =0.20, p = .868; Hypothesis 10d for grouping: g = -0.16, p = .119, Hypothesis 10e for evaluation: f =
-0.10, p =.288, Hypothesis 10f for time: = 0.00, p =.502). Teachers’ reported anxiety did not significantly
predict consensus regarding task (Hypothesis 11a, B = -0.32, p = .054), autonomy Hypothesis 11b, B = -
0.11, p = .315), grouping Hypothesis 11d, = -0.03, p = .444), evaluation Hypothesis 11e, p =-0.07, p =
.366), and time Hypothesis 11f, B =-0.02, p = .467), However, for recognition, anxiety negatively predicted
consensus (Hypothesis 11c, B = -0.50, p = .013). None of the effects for enjoyment were statistically
significant (Hypothesis 12a for task: § = -0.22, p = .848; Hypothesis 12b for autonomy: § = -0.22, p = .833;
Hypothesis 12c for recognition: p = -0.16, p = .799; Hypothesis 12d for grouping: p = -0.07, p = .643,
Hypothesis 12e for evaluation: § =-0.06, p = .631, Hypothesis 12f for time: -0.24, p = .893). With the sole
exception of recognition (f = -0.42, p = .019), the control variable grade did not statistically significantly
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predict consensus regarding mastery goal structures dimensions (B’s ranging between -0.02 for evaluation
and 0.14 for grouping and time, p’s ranging between .392 and 866). Results from the predictive MLM
model are reported in Table 5. Figure 4 shows a graphical representation of the effects of the teacher-
reported predictors.

Discussion

The perceptions of teaching quality among students from the same class who are exposed to the
same teacher can diverge substantially. However, our understanding of the factors involved in driving this
variability in perceptions is very limited. In this study, we addressed this question by focusing on the extent
of agreement, or consensus, among students from a given class. Relying on two samples, we explored both
student-reported predictors and teacher-reported predictors of within-class consensus on teaching quality
in terms of goal structures. First, with regard to student-reported predictors (Sample 1), our study suggests
that, as discussed extensively in prior research on heterogeneity in students’ ratings of instruction (e.g.,
Bardach et al., 2018, 2019b; Ludtke et al., 2006; Schweig, 2016; Schenke et al., 2017), maladaptive
differential teacher treatment negatively predicts consensus, at least for the evaluation dimension
(Hypothesis 2e). In other words, the more students perceived that their teacher treated students differently
based on their achievement levels (i.e., with a better treatment for higher achievers), the less they shared
perceptions of their teachers' evaluation practices. However, and unexpectedly, no such effect was found
for the remaining facets of classroom mastery goal structure (i.e., task, autonomy, recognition, grouping
[Hypothesis 2a-d], or time [Hypothesis f]). A potential explanation for why the effects of differential teacher
treatment were restricted to the evaluation dimension could be related to the fact that this dimension is the
one most intimately connected to achievement (i.e., to the assessment of achievement). In contrast, by being
more disconnected from achievement, the remaining facets thus seem to be perceived in a way that is not
impacted by perceptions of differential treatment. In addition to replicating the current findings to verify
the extent to which they would generalize across samples and contexts, we encourage future researchers to
directly test this potential explanation for why differential teacher treatment effects solely occurred for
evaluation.

Moreover, maladaptive differential teacher treatment did, as assumed, predict achievement
heterogeneity (Hypothesis 8). This indicates that when teachers’ support is unequally distributed in a class
in a maladaptive manner (i.e., favoring higher achievers), achievement gaps tends to enlarge. However, no
statistically significant effect for achievement heterogeneity was documented in the prediction of consensus
regarding mastery goal structures dimensions (Hypotheses 6a-f). The hypothesized mediating mechanism,
involving achievement heterogeneity mediating the relation between differential teacher treatment and
consensus, was not empirically supported for any of the mastery goal structures dimensions (Hypotheses
4a-f). In this study, we used the standard deviation of achievement levels within classes as a very global
measure of variability in achievement. Hence, it might have been desirable to directly ask students about
their perceptions of achievement-related heterogeneity in class in addition to the focus on actual
heterogeneity, which our measure intended to assess. This more subjective measure might have had more
explanatory power as a mediator of the relation between subjectively perceived differential teacher
treatment and consensus on goal structures.

Furthermore, instructional clarity, the second student-rated predictor, was found to positively
predict consensus regarding recognition (Hypothesis 1c), grouping (Hypothesis 1d), and evaluation
(Hypothesis 1f), with higher levels of clarity positively related to consensus on these dimensions. With
regard to recognition, for example, which comprises instructional strategies such as the provision of
feedback (Ames, 1992; Liiftenegger et al., 2017), we propose that clarity might be essential for students to
extract the meaning of teacher feedback. If recognition practices are loosely constructed and lack clarity,
perceptions of these practices necessarily become blurred, decreasing consensus. Clarity also positively
predicted consensus regarding evaluation. The vital importance of explicit, transparent, and clear
assessment and evaluation strategies has long been emphasized with regard to promoting student learning
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(e.g., Nicol & Macfarlane-Dick, 2006; see also e.g., Evans & Waring, 2011; Balloo, Evans, Hughes, Zhu,
& Winstone, 2018). Our findings extend these considerations and indicate that clarity of instruction might
also be relevant in shaping students’ perceptions of teachers’ evaluation strategies, and could play a role in
influencing whether the students within a class share overlapping perceptions of their teacher’s approaches
to evaluation. As the results indicated an effect of differential teacher treatment on evaluation, evaluation
seems to be the dimension most strongly affected by both of the student-rated teacher factors investigated
here. Further research is now necessary to verify the generalizability of our results, and to investigate the
effects of additional student-perceived teacher characteristics on various forms of consensus.

Contrary to our hypotheses and prior research, which has consistently demonstrated that
achievement does play a role for consensus (e.g., Wittwer, 2008), no significant effects of achievement on
consensus were obtained (Hypotheses 5a-f). Class average achievement also did not mediate any of the
associations between clarity and consensus (Hypotheses 4a-f). Notwithstanding, as expected based on prior
research and meta-analytical findings (e.g., Hattie, 2012; Titsworth et al., 2015), the results revealed a
positive effect of instructional clarity on achievement (Hypothesis 7). The reasons for the absence of effects
of achievement on consensus as well as mediating effects of achievement are hard to establish. However,
it could be that characteristics of our sample attending the highest academic track at the secondary level in
the Austrian school system may have influenced the findings. In our sample of generally well-performing
students, features other than achievement (e.g., motivation, personality, emotions, quality of the student-
teacher relationship, e.g., Gollner, Wagner, Eccles, & Trautwein, 2018; Prewett, Bergin, & Huang, 2019)
might have played a greater role in influencing variability in students’ perceptions of teachers’ instruction.
For example, classes in which students perceived that the teacher’s grading practices were unfair or that the
teacher did not sufficiently support students—independent of the actual class-average achievement level—
might have developed collective feelings of resentment towards the teacher. These negative emotions could
then cause low—but more consistent—ratings in these classes. In addition, it should be kept in mind that
this is one isolated finding, and, without doubt, more research is needed. For example, longitudinal studies
might yield essential insights on the interplay among consensus, clarity, and achievement. Existing work
in the goal structure domain has already shown that the relation between consensus on goal structures and
achievement unfolds over time (Bardach et al., 2019b), and the same might apply to mediating effects.

Another important feature of the present research was our examination of teacher-reported
predictors (Sample 2). In this regard, our findings are noteworthy because they present, to the best of our
knowledge, the first attempt to link teachers’ perceptions to within-class consensus. All in all, teacher
reports turned out to be less predictive of consensus than student reports. While this might be due to the
teacher characteristics selected, it could also simply be a matter of perspective. Arguably, if we are striving
to explain students’ shared perceptions of instruction, student ratings per se might be a more important
source of data than ratings by teachers, as ‘outsiders’. Nevertheless, in our study, several effects of teacher-
reported factors were still aligned with our hypotheses, which highlights the utility of teacher ratings in
research on within-class consensus. First, the results indicated negative relations between emotional
exhaustion and consensus regarding task and autonomy (Hypothesis 10a and 10b, respectively). We
propose that the practices of emotionally drained teachers might be characterized by less stability and could
thus fluctuate to a greater extent between lessons and across students. In particular, it requires effort to
create the autonomy-supportive opportunities (e.g., Reeve, 2009) captured in our study by the autonomy
dimension as well as the task dimension to some extent due to the inclusion of autonomous and self-
regulated task-related work (see e.g., Liftenegger et al., 2017). Teachers who feel emotionally exhausted
might not systematically manage to actively support student autonomy, potentially giving rise to
heterogenous perceptions. Second, we found that teachers’ anxiety when teaching negatively predicted
consensus regarding recognition (Hypothesis 11c¢). Recognition practices require the teacher to tailor his or
her feedback to each student and provide individual suggestions for improvement. Teachers who experience
higher levels of anxiety when teaching a class might be less able or have less cognitive capacity to offer
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such personalized feedback in a way that shows equity and uniformity across all students in a class. These

inconsistencies might then explain the finding that anxiety lowers consensus regarding recognition.

Combined with the lack of effects found for teaching-specific enjoyment (see Hypotheses 12a-f stating

positive effects), the findings for emotional exhaustion and anxiety emphasize that negative emotional

factors on the teacher side seem to carry more weight in explaining consensus than positive ones (i.e.,

enjoyment), at least if we use teacher self-ratings. Finally, teacher-reported achievement-related

heterogeneity among the students in a class negatively predicted within-class consensus regarding
evaluation (Hypothesis 9d), which squares well with the effect of student-perceived differential treatment
on consensus regarding evaluation. As our study is the first to explore these teacher-reported predictors and
their impact on consensus, the findings rather point towards promising vs. potentially less promising paths

for future research. At this first stage of research on teacher features and their relations to consensus, a

single study cannot provide definite answers.

Limitations and directions for further research
The present study adds to the existing body of literature on heterogeneity in students’ perceptions;

nonetheless, it is also limited in several aspects. First, we note that the reliability of the scales assessing task

and grouping study were rather low. Importantly, our study relied on a cross-sectional research design,

meaning that we are not able to verify the directionality of the associations or test reciprocal relations (e.g.,

Bardach et al., 2019b). Further research should overcome this limitation by conducting longitudinal studies.

Studies with multiple measurement points (e.g., diary studies, studies applying experience sampling

methods, e.g., Goetz, Sticca, Pekrun, Murayama, & Elliot, 2016) would be particularly well-suited to this

topic and could address further relevant questions, e.g., regarding the stability vs. variability of consensus
and its relations with student- and teacher-reported factors. In addition, it must be acknowledged that other
features and teacher characteristics not considered here might also play a critical role in consensus. For
instance, it must be kept in mind that teaching is highly complex and interactive (e.g., Seidel, 2006). Certain
students’ attributes and teachers’ perceptions of these attributes might hamper teaching and create ‘noise’
in students’ perceptions of instruction, leading to lower consensus regarding instructional practices. One

such attribute could be teachers’ perception of low student motivation (e.g., Skaalvik & Skaalvik, 2016),

as low motivation might act as an interpretative filter interfering with students’ perception of teachers’

actual practices. Put differently, in classes in which teachers perceive that students are rather uninterested,
consensus regarding instruction might be low as well, as students do not pay sufficient attention to the
teacher’s teaching and thus can only provide °noisy’ ratings. Therefore, the inclusion of teachers’
perceptions of low student motivation, but also further characteristics such as teachers’ and students’ own
motivation (e.g., Janke, Bardach, Oczlon, & Liiftenegger, 2019), represents a fascinating avenue for future
studies.
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Table 1
Class-Level Descriptive Statistics, Intraclass Correlations, and Bivariate Correlations (Sample 1)
Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1. Instructional clarity

2. Differential teacher treatment -.69

3. Consensus task (z-transformed) .39 -.35

4. Consensus autonomy (z-transformed) .36 -.33 .53

5. Consensus recognition (z-transformed) 40 -.35 43 52

6. Consensus grouping (z-transformed) .08 .02 14 21 A7

7. Consensus evaluation (z-transformed) .63 -.58 A7 57 .67 .06

8. Consensus time (z-transformed) -.02 A1 21 49 40 31 .25

9. Achievement 32 -.20 .25 A5 .04 -.19 A4 -.14

10. Achievement heterogeneity -11 27 -.07 -12 .03 -.01 -.04 .01 -31

11. Grade 19 -.08 10 .03 .02 A2 A3 15 -.03 .29

M 4.18 3.57 .50 .50 .55 .64 .61 57 3.46 1.04 4.61
SD .64 .67 .16 16 A9 .20 24 A7 .23 14 1.37
ICC(1) 45 37 .04

ICC(2) 94 92 45

Note. N = 1,743 students from 89 classrooms; ICC(1) = intraclass correlation coefficient 1 (proportion of between-classroom variance in total variance);
ICC(2) = intraclass correlation coefficient 2 (reliability of aggregated variable). In the analyses, the multiple-item measures instructional clarity and
differential teacher treatment were modeled as latent variables. All other measures (consensus regarding the six dimensions of goal structures, achievement,
achievement heterogeneity, the control variable school grade) were based on single indicators. Statistically significant correlation coefficients at p < .05 are in
boldface.
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Table 2
Class-Level descriptive Statistics and Bivariate Correlations (Sample 2)
Variable 1. 2. 3. 4. 5. 6. 7 8 9 10. 11
1. Emotional exhaustion
2. Enjoyment -.09
3. Anxiety .08 -.69
4. Teachers’ perceptions of student heterogeneity .09 -.32 21
5. Consensus task (z-transformed) -43 .03 -23  -01
6. Consensus autonomy (z-transformed) -33 -05 -05 -17 .53
7. Consensus recognition (z-transformed) .05 22 -30 -25 41 47
8. Consensus grouping (z-transformed) -13  -02 -04 -04 21 .20 .26
9. Consensus evaluation (z-transformed) -14 13 =12 -42 .55 .61 53 10
10. Consensus time (z-transformed) .06 -.22 10 .07 .26 51 .35 .16 19
11. Grade 27 01 -26 .10 .07 01 -25 10 -.07 14
M 310 469 178 466 .50 49 52 61 .60 .56 4.43
SD 1.13 .90 a7 .79 .18 .16 15 .20 21 .16 1.33

Note. N = 37 teachers and their 726 students from 37 classrooms; please note that we do not report ICC(1) and ICC(2) values for Sample 2 as all variables
were only measured at the classroom level. Statistically significant correlation coefficients at p < .05 are in boldface.
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Table 3
Fit Indices For the Multi-Level Confirmatory Factor Analyses and Predictive Model (Sample 1)

x2 df CFlI TLI RMSEA Model description

1.Model 527.78 169 .95 .93 .035 ML-CFA, free factor loadings (configural invariance)

ML-CFA, factor loadings invariant across levels

2.Model 55291 177 .95 .93 .035 - ;
(metric invariance)

3.Model 476.28 158 .96 .94 .034 ML-SEM (from the metric invariance ML-CFA)

Note. y2 = chi square test of model fit; CFl = comparative fit index; TLI = Tucker-Lewis index; RMSEA
= root mean square error of approximation; ML-CFA = multi-level confirmatory factor analysis; ML-
SEM = multi-level structural equation model.
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Direct (Top) and Indirect (Bottom) Effects the Multi-Level Mediation Analyses (Sample 1)

Independent Variable Mediating Variable Dependent Variable Est. (SE) Std. Est.
Direct Effects
Instructional clarity Achievement 0.13 (0.07) 0.07
Instructional clarity Consensus task 0.33 (0.36) 0.16
Instructional clarity Consensus autonomy 0.45 (0.36) 0.22
Instructional clarity Consensus recognition 0.54 (0.33) 0.26
Instructional clarity Consensus grouping 0.74 (0.40) 0.35
Instructional clarity Consensus evaluation 0.79 (0.27) 0.39
Instructional clarity Consensus time 0.29 (0.40) 0.14
Differential teacher treatment Heterogeneity achievement 0.96 (0.37) 0.24
Differential teacher treatment Consensus task -0.79 (0.74) -0.19
Differential teacher treatment Consensus autonomy -0.66 (0.85) -0.16
Differential teacher treatment Consensus recognition -0.92 (0.68) -0.23
Differential teacher treatment Consensus grouping 1.03 (0.98) 0.24
Differential teacher treatment Consensus evaluation -1.29 (0.58) -0.33
Differential teacher treatment Consensus time 0.88 (0.76) 0.22
Achievement Consensus task 0.88 (0.81) 0.18
Achievement Consensus autonomy 0.16 (0.68) 0.03
Achievement Consensus recognition -0.22 (0.81) -0.05
Achievement Consensus grouping -1.42 (1.05) -0.29
Achievement Consensus evaluation -0.09 (0.67) -0.02
Achievement Consensus time -0.85 (0.67) -0.18
Heterogeneity achievement Consensus task 0.04 (0.11) 0.04
Heterogeneity achievement  Consensus autonomy -0.05 (0.12) -0.05
Heterogeneity achievement Consensus recognition 0.12 (0.11) 0.12
Heterogeneity achievement Consensus grouping -0.15 (0.14) -0.15
Heterogeneity achievement Consensus evaluation 0.07 (0.11) 0.07
Heterogeneity achievement Consensus time -0.14 (0.10) -0.14
Grade Consensus task 0.05 (0.06) 0.01
Grade Consensus autonomy 0.00 (0.08) 0.01
Grade Consensus recognition -0.05 (0.08) -0.07
Grade Consensus grouping 0.10 (0.08) 0.13
Grade Consensus evaluation 0.03 (0.06) 0.04
Grade Consensus time 0.14 (0.07) 0.19
Independent Variable Mediating Variable Dependent Variable Est. (SE) 95% CI
Indirect effect
Instructional clarity Achievement Consensus task 0.12 (0.12) [-0.10,0.43]
Instructional clarity Achievement Consensus autonomy 0.02 (0.09) [-0.18,0.24]
Instructional clarity Achievement Consensus recognition ~ -0.03 (0.11) [-0.30, 0.21]
Instructional clarity Achievement Consensus grouping -0.19 (0.18) [-0.62,0.09]
Instructional clarity Achievement Consensus evaluation -0.01 (0.09) [-0.22,0.19]
Instructional clarity Achievement Consensus time -0.11 (0.11) [-0.38,0.06]
Differential teacher treatment Heterogeneity achievement Consensus task 0.04 (0.11) [-0.18,0.28]
Differential teacher treatment Heterogeneity achievement Consensus autonomy -0.05 (0.11) [-0.30,0.19]
Differential teacher treatment Heterogeneity achievement Consensus recognition 0.12 (0.11) [-0.09,0.39]
Differential teacher treatment Heterogeneity achievement Consensus grouping -0.15 (0.15) [-0.49,0.11]
Differential teacher treatment Heterogeneity achievement Consensus evaluation 0.07 (0.11) [-0.14,0.32]
Differential teacher treatment Heterogeneity achievement Consensus time -0.13(0.12) [-0.40, 0.06]

Note. N = 1,743 students from 89 classrooms; Est. = unstandardized parameter estimate; Std. Est. =
standardized estimate; 95% CI = 95% asymmetric confidence intervals based on the distribution of the
product method (MacKinnon et al., 2007). Statistically significant results at p < .05 are in boldface.
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Table 5
Results of the Predictive Model Relying on Sample 2
Predictor Consensus
Task Autonomy Recognition Grouping Evaluation Time

Est. (SE) Std. Est.(SE) Std. Est.(SE) Std. Est.(SE) Std. Est.(SE) Std. Est (SE) Std.
Emotional exhaustion -07(04) -46 -05(02) -34 .03(02) .20 -03(03) -16 -02(03) -10 .00(.02) .00
Enjoyment -04(04) -22 -04(04) -22 -03(03) -16 -02(04) -07 -02(05) -06 -04(03) -.24
Anxiety -08 (05 -32 -02(05) -11 -10(05) -50 -.01(05) -03 -02(06) -07 -00(05) -.02
Eg&‘;gzgeﬁgcep“ons ofstudent o1 (03) .02 -04(03) -20 -03(03) -17 -01(04) -05 -11(04) -41 -00(04) -02
Grade (control) 02(02) .11  .01(02) .09 -05(02) -42 .02(03) .14 -00(02) -02 .02(02) .14

Note. N = 37 teachers and their 726 students from 37 classes; Est. = unstandardized parameter estimate;
Std. = standardized estimate. Statistically significant results at p < .05 are in boldface.



Hypothesis 7
+

Achievement

+

Hypotheses Sa-f

Sample 1

Hypothesis 8

Clarity

Indirect effect: Achievement mediates effect of Clarity = Consensus: +

Direct effect: Clarity = Consensus: +
Hypotheses la-f

Consensus Diff. Teacher

CONSENSUS IN STUDENT’S PERCEPTIONS 2

Achievement
Heterogeneity

Hypotheses 6a-f

Consensus

Goal Structures Treatment

Hypotheses 3a-f

|
|
|
|
|
|
I Direct effect: Diff. TT = Consensus: +
|
|
I
|
|
|

Goal Structures

Hypotheses 2a-f

Indirect effect: Achievement Heterog. mediates effect of Diff. TT - Consensus: =

Hypotheses 4a-f

Sample 2

Student
Heterogeneity

Hypotheses 9a-f

Emotional
Exhaustion

Hypotheses 10a-f

Anxiety

Consensus
Goal Structures

H, vporhese; la-f

Enjoyment

Hypotheses 12a-f

Figure 1. Overview of the hypotheses and assumed directions (positive effects, negative effects) in this study. The hypotheses for the analyses
relying on sample 1 are displayed in the upper part, the hypotheses for the analyses relying on sample 2 are displayed in the lower part. As the
hypotheses were the same for consensus regarding all six dimensions of goal structures, “consensus goal structures” refers to all six dimensions.
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Figure 2. ML-SEM tested for Sample 1. Dotted lines represent the tested partial mediations, with
achievement partially mediating the relation between instructional clarity and within-class consensus
and achievement heterogeneity partially mediating the relation between differential teacher treatment
and within-class consensus. For parsimony, correlations between mediators and the estimated paths of
the control variable school grade on within-class consensus regarding the six mastery goal structures
dimensions are not displayed.
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Figure 3. Graphical representation of the effects in terms of 95% confidence intervals of the regression slopes of the two main predictors, instructional clarity
and differential teacher treatment, predicting consensus regarding six goal structure dimensions in Sample 1. It should be noted that the confidence intervals
are based on two-tailed tests, whereas we conducted one-tailed tests. Hence, the effects of instructional clarity predicting recognition and grouping, which
include zero in the confidence intervals, were still statistically significant in our study.
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Figure 4. Graphical representation of the effects in terms of 95% confidence intervals of the regression slopes of the teacher-reported predictors, emotional
exhaustion, enjoyment, anxiety, and teachers’ perceptions of student heterogeneity, predicting consensus regarding six goal structure dimensions in Sample 2.



