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Abstract 

Traditionally, assessments of factor validity of body image instruments have relied on exploratory or 

confirmatory factor analysis. However, the emergence of exploratory structural equation modeling 

(ESEM), a resurgence of interest in bifactor models, and the ability to combine both models (bifactor-

ESEM) is beginning to shape the future of body image research. For these analytic approaches to truly 

advance body image research, scholars will need to have a deep understanding of their use and 

application. To facilitate such understanding, we describe ESEM and bifactor-ESEM models for body 

image researchers and provide them with the tools they need to apply these methods in their own 

work. Specifically, we provide an overview of ESEM and bifactor-ESEM models, and describe their 

broad applicability to body image research. Next, we describe how ESEM and bifactor models can be 

used and, using an existing dataset of responses to the Acceptance of Cosmetic Surgery Scale, 

demonstrate how ESEM and bifactor-ESEM models can be deployed. To facilitate wider application 

of these ideas, we provide our Mplus syntax (inputs) in Supplementary Materials. Through this 

manuscript, we hope to assist researchers to better understand the strengths ESEM and bifactor 

models, and to use these approaches in their own work.  

 

Keywords: Exploratory structural equation modeling; Bifactor models; Confirmatory factor analysis; 
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1. Introduction 

Issues of factor validity – that is, the extent to which the expected structure of scores on an 

instrument can be recovered in a set of real test scores (Piedmont, 2014) – are central to quantitative 

research on body image. For instance, factor validity is relevant not only to scale construction (i.e., 

determining how the structure of scores on a novel instrument should be represented; Worthington & 

Whittaker, 2006) and test adaptation (i.e., determining how the structure of scores on an existing 

instrument should be represented in a novel linguistic or cultural group; Swami & Barron, 2019), but 

also informs decisions about score computation (Byrne, 2001; Hair et al., 2009). In most cases, factor 

validity is determined through factor analysis, with exploratory and confirmatory factor analyses 

being the traditional methods of choice for most body image scholars. However, emerging 

alternatives have the potential to contribute to, and support, the refinement of multidimensional body 

image theories.  

In particular, the development of exploratory structural equation modeling (ESEM; 

Asparouhov & Muthén, 2009), a resurgence of interest in bifactor models (Reise, 2012), and their 

combination (Morin et al., 2016) has spurred rapid theoretical advancements across diverse fields of 

psychological research (e.g., Alamer, 2022; Gegenfurtner, 2022; Morin et al., 2020; Tóth-Király et al., 

2017) and is beginning to shape body image research (e.g., Lazarescu et al., 2023; Swami, Maïano, & 

Morin, 2022). However, for these analytic approaches to truly help advance body image research, 

scholars need to have a deeper understanding of their use and application. Currently, the application 

of ESEM and bifactor-ESEM to body image research remains piecemeal, possibly because of a lack 

of familiarity among body image scholars of the intended purpose and utility of these analytic 

approaches. Body image researchers may also have limited practical knowledge of these methods, 

which can impede their application relative to traditional factor analytic methods.  

In this article, our objective is to describe ESEM and bifactor-ESEM for body image 

researchers, while providing them with the tools to apply these methods in their own research. To 

achieve these goals, we begin by describing how body image researchers have historically approached 

issues of factor validity. Next, we provide an overview of ESEM and bifactor-ESEM, and describe 

their broad applicability to body image research. Then, we describe how ESEM and bifactor-ESEM 

can be used in practice and, using an existing dataset, demonstrate how they can be used to advance 

knowledge in a specific area of body image research. To facilitate wider application, we provide our 

Mplus syntax (inputs) for all models estimated in this article in the Supplementary Materials. Through 

this manuscript, we hope to assist body image researchers to better understand the strengths and 

limitations of ESEM and bifactor-ESEM, to use both approaches in their own research, and to 

correctly interpret findings from ESEM and bifactor-ESEM solutions.  

2. Exploratory Structural Equation Modeling and Bifactor Models 

2.1. Background 

2.1.1. Exploratory factor analysis. Factor validity refers to the extent to which scores on the 

items (i.e., typically observed scores on questions used to assess the presence of a construct) included 

in a measure share strong associations with the one construct that it is supposed to define (i.e., the 

latent factor). Some also erroneously consider that factor validity assumes scores on these items 

should also share no, or only negligible, associations (i.e., cross-loadings) with the other constructs 

assessed within the instrument, when in fact it simply refers to the presence of the expected item-

factor associations while allowing for the presence of smaller (or stronger but explainable) cross-

associations (e.g., Morin et al., 2020). In body image research, factor validity is typically assessed 

using exploratory factor analysis (EFA), confirmatory factor analysis (CFA), or a combination of both 

methods (for a review, see Swami & Barron, 2019).  

EFA, often used as a first analytic step, allows scholars to determine the most appropriate 

method of conceptualising scores in a given dataset without any modeling limitations. In other words, 

EFA is typically used to either “explore” the structure of responses to an instrument in the absence of 

clear a priori expectations. EFA is, therefore, viewed as especially useful when researchers do not 

have a clear theoretically derived picture of the factor structure of their data (Worthington & 

Whittaker, 2006). However, EFA can also be used as a more robust test of whether the a priori factor 

structure will be supported when the researchers are not providing any guidance in this regard to the 

analytic procedure (e.g., Marsh et al., 2009; Morin & Maïano, 2011).  

Historically, the factor structure of some body image instruments – such as the widely used 
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Multidimensional Body-Self Relations Questionnaire (MBSRQ; Brown et al., 1990; Cash, 2000) and 

the Drive for Muscularity Scale (DMS; McCreary et al., 2004) – was determined using EFA (or 

principal components analysis, which is often erroneously assumed to pursue similar objectives; 

Fabrigar et al., 1999) alone. However, there is now wider recognition that the factor validity of 

constructs cannot be fully determined by classical applications of EFA (Swami & Barron, 2019). This 

recognition stems, in part, from the inability of traditional EFA methods to control for different types 

of methodological artefacts or to test the measurement invariance (or equivalence) of a model in 

different samples or over time, and from its lack of connection with the broader Structural Equation 

Modeling (SEM) framework. Because of these limitations, EFA is now often viewed as useful for 

preliminary analyses, but lacking in its ability to inform more complex decision-making about factor 

validity (Morin, 2023). As such, body image scholars are increasingly using EFA as a first analytic 

step, which is then followed by CFA as a second or cross-validation step, based on the (often 

erroneous) assumption that CFA will provide a more accurate theory-driven representation of their 

data (Morin et al., 2020). 

2.1.2. Confirmatory factor analysis. CFA allows researchers to explore how well a 

predefined theoretical or hypothesised model fits a given dataset. In other words, researchers begin by 

formulating an a priori hypothesis about the factor structure of a measure before testing their 

assumptions (Brown, 2015). A traditional benefit of CFA, relative to EFA, as a second step method 

was the ability to test the adequacy of a model against the data via an examination of the model fit 

indices (e.g., Hu & Bentler, 1999). However, fit indices have been available for some time for EFA in 

certain statistical packages (e.g., MPlus, R). Beyond this, true benefits of CFA as a second step 

method came from its ability to test measurement invariance and criterion-related validity of factors 

within a latent variable framework corrected for unreliability. As a result, in psychology generally and 

in body image research specifically, CFA remains the most widely used method for testing the factor 

validity of scores on an instrument. Indeed, despite calls to avoid doing so (Swami & Barron, 2019; 

Swami, Todd et al., 2021), it is not uncommon to see CFA used as the sole method of estimating 

factor validity in body image research.  

A key feature of CFA is that items are typically allowed to load only on their respective a 

priori latent factor (see Figure 1a), while cross-loadings across latent factors are forced to be exactly 

zero (Marsh et al., 2009, 2014; Morin et al., 2016). This is not a concern when an instrument is 

assumed to reflect one and only one latent variable (Wei et al., 2022); that is, when all items on an 

instrument are expected to measure the same latent construct. This is the case with many existing 

body image instruments, such as the Body Appreciation Scale-2 (Tylka & Wood-Barcalow, 2015), the 

Functionality Appreciation Scale (Alleva et al., 2017), and the Breast Appreciation Scale (Swami, 

Todd et al., 2022) – all of which are hypothesised to measure a single unidimensional construct. In 

situations such as these, the reliance on an initial assessment of factor structure using EFA (to ensure 

the presence of a single factor) followed by a cross-validation using CFA is appropriate.  

However, the assumption of zero cross-loadings in CFA is more problematic when dealing 

with multidimensional instruments (i.e., where scores on an instrument consist of multiple, 

independent components; Morin, 2023; Morin et al., 2016, 2020). This is because the assumption that 

items on a scale will have zero cross-loadings is, in practice, improbable and unrealistic in most cases, 

especially when an instrument measures conceptually related constructs (Marsh et al., 2014; Morin et 

al., 2016, 2020). Consider, for instance, the Appearance Scales of the MBSRQ (MBSRQ–AS; Cash, 

2000), which includes items assessing appearance evaluation (e.g., “I like my looks just the way they 

are”) and appearance orientation (e.g., “Before going out in public, I always notice how I look”). 

Estimating a CFA with responses obtained on the MBSRQ–AS would mean assuming that items load 

only on their respective hypothesised latent factors (i.e., appearance evaluation or appearance 

orientation, respectively) and no other factor. In reality, however, items designed to measure 

appearance evaluation are likely to present weaker, though still meaningful, associations with 

conceptually related constructs, such as appearance orientation.  

In fact, there is now much wider recognition that items designed to assess conceptually 

related factors tend to share at least some construct-relevant associations with the other factors 

included in the model (Asparouhov & Muthén, 2009; Gillet et al., 2020; Guay et al., 2015; Marsh, 

Nagengast et al., 2013; Morin et al., 2013, 2020). This, in turn, means that CFA is often an 

unrealistically restrictive approach to tests of factor validity and increases the likelihood that a well-
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defined EFA factor structure will be difficult to replicate using CFA (Marsh, Nagengast et al., 2013; 

Marsh et al., 2009). As a result, CFA is likely to result in inflated estimates of factor correlations (i.e., 

the only way for unmodelled cross-loadings to be expressed is via an inflation of factor correlations) 

and of associations between these factors and other variables as a result of these inflated factor 

correlations (e.g., Asparouhov & Muthén, 2009; Marsh et al., 2014; Morin et al., 2020; Shao et al., 

2022; Zhang et al., 2023). Supporting this claim, statistical simulation studies have clearly shown that 

failure to model even negligible cross-loadings (i.e., as small as .10) results in biased estimates of 

factor correlations and regressions, whereas allowing for the free estimation of unnecessary cross-

loadings still results in unbiased parameter estimates (Asparouhov et al., 2015; Mai et al., 2018; Wei 

et al., 2022).  

Beyond these biased estimates, the restrictive nature of CFA also means that researchers are 

often faced with ill-fitting models despite using measures with a well-replicated factor structure (e.g., 

Marsh, Nagengast et al., 2013; Marsh et al., 2009). Scholars usually deal with such model 

misspecification through post hoc data-driven procedures designed to improve model fit (e.g., 

examining modification indices to locate potential areas of misspecification, adding correlated 

uniqueness, etc.; Schumacker & Lomax, 2004). However, these strategies are rarely grounded in 

theory and, as a result, lack generalisability. For instance, correlating measurement error usually 

implies that there is an underlying, confounding factor that the researcher has failed to take into 

account. However, using this approach in a situation where one is unable to clearly identify this 

confounding factor is more likely to represent capitalisation on chance than in the identification of a 

replicable factor structure. In fact, even when these post hoc modifications result in an improved 

model fit, well-fitting CFA models may still hide misspecifications given their ability to absorb 

unmodelled cross-loadings through an inflation of factor correlations, without letting them impact 

model fit (e.g., Morin et al., 2016, 2020).  

These observations have important implications for body image research, the most pertinent 

of which is the difficulty replicating hypothesised multidimensional factor structures based on CFA in 

new datasets or populations. For example, the Body and Appearance Self-Conscious Emotions Scale 

(BASES; Castonguay et al., 2014) was originally conceptualised through the use of CFA as consisting 

of four independent factors assessing the discrete emotions of guilt, shame, authentic pride, and 

hubristic pride. Because the BASES was developed using CFA, an implicit assumption is that items in 

the instrument load only on their respective a priori latent factors (e.g., items assessing hubristic pride 

will only load on the Hubristic Pride factor), while cross-loadings are ignored. However, such an 

assumption is unlikely to be realistic and, in fact, when alternative analytic methods are used (e.g., 

EFA), cross-loadings have been shown to be more common and substantial than previously 

acknowledged (e.g., Alcaraz-Ibáñez & Sicila, 2018; Swami, Maïano, Wong et al., 2021). In practice, 

this has meant that scholars have found it very difficult to replicate the 4-factor BASES structure 

using CFA with new datasets (Swami, Maïano, & Morin, 2022; Swami, Maïano, Wong et al., 2021).  

Similar problems affect other multidimensional body image and body image-related scales, 

including the MBSRQ–AS (see Lizana-Calderón et al., 2023; Swami et al., 2019) and the Intuitive 

Eating Scale-2 (IES-2; Tylka & Kroon Van Diest, 2013). The latter was originally developed using an 

EFA-to-CFA approach and, while the original development study led to the extraction of four 

independent factors (i.e., where items do not cross-load across factors), recent work has shown both 

that cross-loadings are in fact substantial and that the 4-factor model is not recoverable in some 

contexts (Anastasiades et al., 2022; Swami, Maïano, Todd et al., 2021), including in the national 

group in which it was originally developed (i.e., the United States; Swami, Maïano, Furnham et al., 

2022). We do not highlight these examples to disparage the developers of these instruments, but 

rather to highlight the limitations of CFA in body image research. Recognising that CFA is an 

imperfect analytic tool does not require us to throw out these instruments and does not imply that the 

underlying constructs are problematic. Instead, it points to the need to account for cross-loadings – 

even if they are small in magnitude – in our analyses (Morin, 2023).  

2.2. Exploratory Structural Equation Modeling 

The development of exploratory structural equation modeling (ESEM; Asparouhov & 

Muthén, 2009) made it possible to benefit from the advantages usually associated with CFA while 

still relying on EFA measurement. Specifically, ESEM is an analytic framework that represents a 

connection between EFA measurement models and the overarching CFA framework, making it 
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possible to benefit from all of the advantages typically associated with CFA, while relying on an EFA 

measurement model (incorporating cross-loadings; see Figure 1b). Moreover, the development of 

target rotation (e.g., Browne, 2001) makes it possible rely on an a priori specification of the main 

factor loadings, while constraining the cross-loadings to be as close to zero as possible, yet freely 

estimated. This rotation thus makes it possible to rely on confirmatory applications (i.e., based on an a 

priori factor structure) of measurement models while adopting an EFA-like factor structure (Morin et 

al., 2020). In this sense, ESEM can be used for purely confirmatory or exploratory purposes, while 

retaining the benefits of both EFA and CFA (Marsh et al., 2014; Morin et al., 2020).  

To better illustrate ESEM benefits, consider again the example of the MBSRQ–AS and its 

factors assessing appearance evaluation and appearance orientation. While the application of CFA 

would mean considering both factors as distinct (which often results in poor CFA-based fit; Brytek-

Matera & Rogoza, 2015; Lizana-Calderón et al., 2023), a more realistic assumption is that items 

related to each factor tap into conceptually related constructs (e.g., some items may simultaneously 

tap into appearance evaluation and appearance orientation). This would be consistent with the idea 

that individuals with higher appearance orientation (e.g., always noticing how one appears before 

going out) will also have high scores on appearance evaluation (e.g., considering oneself to be 

sexually appealing). With ESEM, the possibility of cross-loadings would be specifically accounted for 

while still allowing researchers to rely on a priori specifications of the constructs.  

Emerging research has shown that ESEM-based models typically provide an improved, and 

more accurate, representation of the data than CFA-based models (for a review, see Gegenfurtner, 

2022), including for some multidimensional body image(-related) instruments, such as the BASES 

(Swami, Maïano, & Morin, 2022; Swami, Maïano, Wong et al., 2021), the IES-2 (Anastasiades et al., 

2022; Swami, Maïano, Furnham et al., 2022; Swami, Maïano, Todd et al., 2021), the Acceptance of 

Cosmetic Surgery Scale (Lazarescu et al., 2023), the Body Checking Questionnaire and the Body 

Checking Cognitions Scale (Maïano et al., 2021), and the Sociocultural Attitudes Toward Appearance 

Questionnaire-3 (Sánchez-Carracedo et al., 2012). For instance, initial CFA investigations of the short 

form of the Physical Self-Inventory have revealed problematically high factor correlations (Maïano et 

al., 2008). Interestingly, these correlations are far more aligned with the theoretical distinctiveness of 

the factors when modelled while allowing for cross-loadings (e.g., Morin & Maïano, 2011). 

Moreover, relying on ESEM has also led to the identification of problems with some items that 

remained unseen with CFA, leading to the development of a more accurate, revised version of this 

instrument (e.g., Morin et al., 2018). However, while the superiority of ESEM is now well-established 

in diverse fields (e.g., Guay et al., 2015; Howard et al., 2018), its use in body image research remains 

piecemeal and occasional.  

2.3. Higher-Order Models 

Although ESEM accounts for construct-relevant psychometric multidimensionality occurring 

when an instrument assesses conceptually-related factors, multidimensionality also occurs with 

hierarchically-ordered constructs; that is, when specific factors are designed to reflect facets of a more 

global construct (Morin et al., 2016, 2020). In the example of the MBSRQ–AS we presented above, 

this form of multidimensionality would reflect participants’ overall body image, over and above their 

specific levels of appearance orientation, appearance evaluation, and so on. Historically, body image 

researchers have tended to model this form of global/specific multidimensionality through higher-

order factor models, in which first-order factors are used to model second-order factors derived 

empirically (e.g., McCreary et al., 2004; Swami et al., 2018) or theoretically (e.g., Henderson-King & 

Henderson-King, 2005; Wu et al., 2020).  

No matter how this higher-order representation is derived, items are used to define first-order 

factors, which are in turn used to define a second-order factor reflecting the variance that is shared 

among the first-order factors (see Figures 1c and 1d, which represent higher-order CFA and ESEM 

models). Such models may appear intuitive, but they present one important limitation: they rely on a 

very stringent proportionality constraint in defining how the items relate to the higher-order factor and 

to the specific part of the first-order factors that is not explained by the higher-order factors (i.e., its 

disturbance; Reise, 2012). More specifically, the relation between an item and the higher-order factor 

is assumed to be indirect (i.e., mediated by the first order factor; Brunet et al., 2016; Gignac, 2016). 

This indirect effect is reflected as the product of (a) the item’s first-order factor loading by (b) the 

loading of this first-order factor on the higher-order factor. This second term (b) is thus a constant for 
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all items associated with a specific first-order factor. Likewise, the relation between an item and the 

disturbance of the first-order factor to which it is associated is also reflected by the product of this 

item’s loadings on the first-order factor (a) and another constant representing the link between the 

first order factor and its disturbance (c). These implicit proportionality constraints imply that the ratio 

of global/specific variance (ab/ac) will be exactly the same for all items associated with a specific 

first-order factor (i.e., corresponding to b/c). However, this proportionality constraint rarely makes 

sense theoretically and is unlikely to hold in real life (Reise, 2012).  

2.4. Bifactor-CFA and Bifactor-ESEM Models  

Bifactor models provide a more viable alternative and have recently gained popularity in 

diverse fields of research (Alamer, 2022; Giordano et al., 2020; Markon, 2019; Morin et al., 2016, 

2020; Reise, 2012). In bifactor models, items are typically allowed to define a global G-factor and one 

specific S-factor, with all S-factors specified as orthogonal to one another and in relation to the G-

factor (Morin et al., 2016, 2020). This method separates the total item covariance into: (i) a global 

component (the G-factor) that explains the variance shared among responses to all items, and; (ii) 

specific factors (S-factors) that explain the covariance associated with items subsets not already 

explained by the global component. Thus, in a f-factor bifactor model, one G-factor (e.g., body image) 

and f-1 S-factors (e.g., appearance evaluation, appearance orientation, etc.) are used to explain the 

covariance among a set of n items. A bifactor model thus partitions the total covariance into a G 

component underlying all items and f-1 S components reflecting the residual covariance not explained 

by the G-factor. Bifactor models thus test the presence of a global unitary construct underlying the 

answers to all items (G-factor) and whether this global construct co-exists with meaningful 

specificities (S-factors) defined by the part of the items not explained by the G-factor.  

Bifactor modeling can be used in conjunction with CFA (where items load onto their 

specified S-factors and the G-factor) and ESEM (where all items load and cross-load on all S-factors, 

in addition to the G-factor; Morin et al., 2020; see Figures 1e and 1f, which represent bifactor-CFA 

and bifactor-ESEM models). Through their reliance on direct associations between items and all 

factors, bifactor models are able to estimate co-existing and properly disaggregated global and 

specific constructs, but are able do so without imposing the restrictive proportionality constraints 

inherent in higher-order factor models. This makes bifactor models a more tenable alternative to the 

representation of a hierarchically organised factor structure (Gillet et al., 2020; Morin et al., 2016, 

2020). Accordingly, Morin (2023; see also Morin et al., 2022) recommended that higher-order models 

should be avoided, unless there are very strong theoretical and/or empirical reasons supporting the 

incorporation of rigid implicit proportionality constraints into a model. Even when estimated, higher-

order models should always be contrasted with bifactor models. When both models can be shown to 

result in an equivalent representation of the data, the more parsimonious higher-order model can be 

retained (Morin et al., 2022). Otherwise, bifactor models should be favoured. 

For body image scholars, bifactor models can be particularly useful because of their ability to 

separate the variance associated with a G-factor from that associated with the S-factors. More often 

than not, body image scholars will want to know whether a general factor is present in their data and, 

if so, what content characterises it (see Bornovalova et al., 2020). Consider the example of the Drive 

for Muscularity Scale (DMS; McCreary et al., 2004), which is conceptualised as consisting of factors 

assessing muscularity-oriented attitudes and behaviours, respectively. If all DMS indicators load 

similarly and strongly onto a G-factor, then this would support the notion that drive for muscularity 

shares a common core (e.g., Simone et al., 2021). However, if some indicators (say, attitudinal 

indicators) load more strongly onto the G-factor, then this might suggest that those indicators are 

more likely to explain the meaning of drive for muscularity as measured using the DMS. Importantly, 

when relying on bifactor models, the S-factors can be directly interpreted as the extent to which 

scores on a specific dimension deviate from scores on the global construct in a way that is untainted 

by multicollinearity and redundancy. In contrast, this disaggregation is not present in higher-order 

models, where what is unique to the first-order factors (relative to the higher-order one) is pushed into 

the disturbances of the first-order factors (Morin et al., 2020). This means that using the first- and 

second- order factors together in an analysis will result in conceptual redundancy as the content of the 

first-order factors overlaps with that of the second-order factor (Morin et al., 2020).  

Increasingly, body image research suggests that bifactor models – and particularly bifactor-

ESEM models – offer an improved representation of the data relative to alternative models (for a 
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review, see Gegenfurtner, 2022), including instruments such as the IES-2 (Anastasiades et al., 2022; 

Swami, Maïano, Furnham et al., 2022; Swami, Maïano, Todd et al., 2021), the Acceptance of 

Cosmetic Surgery Scale (Lazarescu et al., 2023), the Body Concealment Scale for Scleroderma 

(Jewett et al., 2015), and the Body Checking Questionnaire and the Body Checking Cognitions Scale 

(Maïano et al., 2021). However, there are also cases where a bifactor model may not make conceptual 

sense. For instance, when we consider the BASES, which posits discrete body- and appearance-

related emotions, a G-factor would not be plausible (Swami, Maïano, & Morin, 2022). In other words, 

bifactor representations should ideally be supported by theory or at least empirical logic supporting 

the idea that a global construct might underpin responses to various dimensions covered in a measure 

(Decker, 2021; Morin et al., 2020). To date, however, the use of bifactor-ESEM models to understand 

multidimensional body image constructs remains relatively limited. 

3. When Should ESEM and Bifactor-ESEM Be Used? 

ESEM and bifactor-ESEM can help scholars better understand the structure of body image 

instruments. There are several instances where ESEM and bifactor-ESEM may be particularly useful. 

Most obviously, these methods lend themselves well to studies reporting on the development of novel 

instruments for which a multidimensional factor structure is hypothesised, on test adaptation studies 

where the original development study has proposed a multidimensional factor structure, or on studies 

seeking to re-assess or refine the structure of an existing instrument following reports of inconsistent 

results. Figure 2 presents a decision tree that researchers may find useful in determining when CFA, 

ESEM, bifactor-CFA, and bifactor-ESEM should be used. Table 1 provides a summary of each of 

these models.  

When no clear a priori structure exists (i.e., empirically-derived new instruments), when 

previous research has supported a variety of alternative solutions, or when an existing instrument is 

being deployed in a new linguistic context, one could rely on the traditional approach where an initial 

EFA is followed-up by a sequential strategy (described in more detail below) to compare alternative 

models based on the EFA-structure identified in the first step (for examples of this approach, see 

Anastasiades et al., 2022; Lazarescu et al., 2022; Swami, Maïano, Todd et al., 2021; Swami, Maïano, 

Wong et al., 2021). In contrast, when a clear a priori multidimensional factor structure can be 

specified, or has been identified previously, one should rely on a sequential strategy testing alternative 

CFA, ESEM, bifactor-CFA, and bifactor-ESEM models. When more than one sample is available, 

then the second sample should be used to cross-validate the structure retained in the first sample (for 

examples of this approach, see Garrido et al., 2020; Maïano et al., 2021; Winkens et al., 2018). This 

sequential comparison should incorporate ESEM only when the factors can be seen as conceptually 

related and should incorporate bifactor models only when they can be seen as presenting a 

global/specific structure (Morin et al., 2020).  

The sequential strategy mentioned above is described more fully in Morin (2023) and Morin 

et al. (2020). Examples of their application in the body image literature can be found in Swami, 

Maïano, Furnham et al. (2022) and Swami, Maïano, and Morin (2022). In brief, this strategy involves 

an initial comparison of standard CFA and ESEM models for conceptually related constructs. Model 

fit (see Section 5.1) and indicators of measurement quality (e.g., standardised factor loadings, item 

uniqueness, levels of tolerance for cross-loadings) should be used to determine whether CFA, ESEM, 

or both models should be retained. If both models present an adequate level of fit to the data, then the 

researcher proceeds by comparing their parameter estimates. In this situation, the ESEM 

representation is supported when: (a) model fit is improved relative to CFA; (b) factor correlations are 

reduced in ESEM relative to CFA; (c) the ESEM factors are defined as well as their CFA counterparts 

(i.e., by similarly strong main factor loadings; most of them should be > .40 and ideally > .50), and; 

(d) cross-loadings do not interfere with the interpretation of the solution (in which case one could 

decide to re-assess the relevance of all items or factors). For criterion (d), cross-loadings can be seen 

as interfering with the interpretation of the factors when they are higher than, or similar to, the main 

loading in a way that cannot be explained by theory or logic.  

In each of these cases, there are no “golden rules” to be followed, so we recommend that 

researchers use their judgement to determine whether distinct patterns of results are observed between 

the ESEM and CFA models, explain their decision-making process, and comprehensively report (even 

if only in Supplementary Materials) all results used in their decision-making (i.e., model fit of all 

models and parameters estimates for all models supported by model fit indices). For example, when 
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comparing factor correlations across ESEM and CFA models, researchers should ask whether the 

former provides a clearer differentiation between factors compared to the CFA model (i.e., whether 

there is a unique distinction of factors in the ESEM model), report their conclusion, and make these 

correlations available to readers. Given that ESEM tends to provide a better representation of the true 

factor correlations when cross-loadings are present in the population model, lower (by any magnitude) 

factor correlations in ESEM compared to CFA can be taken as evidence favouring the former. 

Although the model with the smallest factor correlations is usually preferred, decisions should be 

based on a holistic evaluation of the other considerations mentioned above. 

Once this is done, the best solution (CFA or ESEM) can then be compared with its bifactor 

counterpart when one can assume that the constructs follow a global/specific structure. In this 

comparison, the bifactor model should be preferred when: (a) the G-factor and a subset of S-factors 

are well-defined by their a priori factor loadings (minimally higher than .30, but ideally higher than 

.50 on at least one of the G- or S-factors); (b) when model fit is improved relative to the initial CFA or 

ESEM model, and; (c) when cross-loadings are reduced (by any magnitude) relative to the ESEM 

solution or at least remain non-problematic. Again, researchers should use their best judgement when 

making these comparisons across models and avoid relying on “golden rules”. That is, researchers 

should closely inspect all models that are tested holistically and make decisions to retain a final model 

based on the context of all considerations described above.  

4. When Should ESEM and Bifactor-ESEM Not Be Used? 

One might also flip the question posed in the previous section and ask: when should ESEM 

and bifactor-ESEM not be used? There are some situations where these approaches are unhelpful or 

inappropriate. For instance, the Sociocultural Attitudes Toward Appearance Questionnaire-4-Revised 

(SATAQ-4R; Schaefer et al., 2017) postulates separate factors assessing internalisation of appearance 

ideals (thin/low body fat, muscular, general attractiveness) and pressure to attain appearance ideals 

(media, peers, and significant others). Both theory (Thompson et al., 1999) and empirical evidence 

(e.g., Schaefer et al., 2017; Stefanile et al., 2019) support the conceptualisation of these factors as 

unidimensional and a global construct as conceptually meaningless. Even were a SATAQ-4-R G-

factor identified, it is not clear that such a global factor would offer improved conceptual 

understanding or meaning. In this case, therefore, application of an ESEM or bifactor-ESEM 

approach would not be appropriate. Ultimately, the decision of whether or not to rely on an ESEM or 

bifactor-ESEM approach should be based on existing theory and data, and consideration of the 

conceptual meaning of bifactor modeling (Morin et al., 2016, 2020).  

ESEM and bifactor-ESEM should also not be used when the constructs under assessment are 

not conceptually related. This is unlikely to be the case for most body image instruments. ESEM and 

bifactor-ESEM are also not recommended for constructs assessed from different instruments (unless a 

particularly strong case can be made to support that modeling decision) and should never be used 

among factors located at different stages of the theoretical causal link under investigation (i.e., 

predictors, mediators, moderators, outcomes) or measured at different time points (Morin, 2023; 

Morin et al., 2020). Indeed, having the items from an outcome contribute to the definition of its 

predictors would create a very problematic feedback loop in the model. However, when one relies on 

multiple conceptually related or hierarchically ordered factors for different measures, from measures 

located at different stages of the causal process, or from measures taken at different time points, one 

could use Set-ESEM, or Set-Bifactor-ESEM (Marsh et al., 2020).  

In Set-ESEM or Set-Bifactor-ESEM, items from conceptually related/hierarchically ordered 

factors located at the same causal stage/time-points are allowed to cross-load with one another 

(forming one “Set”), while another Set of items are also allowed cross-load with one another but not 

with those from the first Set. For example, if body image concerns (e.g., appearance orientation, 

appearance evaluation, body satisfaction) as measured by the MBSRQ–AS and symptoms of 

disordered eating (e.g., drive for thinness, body dissatisfaction, as measured using the Eating Disorder 

Inventory-3 or EDI-3) are estimated within Set-ESEM, then both Sets of factors would be modeled 

simultaneously. Here, the first-order latent factors would be permitted to covary, and cross-loadings 

between the MBSRQ-AS factors and cross-loadings between the EDI-3 factors, respectively, would 

be allowed. However, in contrast to a typical ESEM model, items from the MBSRQ–AS would not be 

allowed to cross-load on to the EDI-3 factors and vice versa. While we are not aware of any current 

application of Set-ESEM to body image research, Yukhymenko and Gilbert (2021) provide a useful 
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application of both ESEM and Set-ESEM in the context of scale construction in a related field.  

5. How Should ESEM and Bifactor-ESEM Be Used? 

5.1. Estimation and Model Fit 

It is currently only possible to fully estimate ESEM and bifactor-ESEM analyses in Mplus 

(Muthén & Muthén, 2022), although a partial implementation is possible in R (see Geiser, 2023; 

Prokofieva et al., 2023). In Mplus, ESEM and bifactor-ESEM (as well as any other models) should be 

estimated using the Maximum Likelihood Robust (MLR) estimator for models with continuous 

indicators (to avoid the need to test for normality, as this estimator is robust to non-normality), or the 

weighted least square estimator using a diagonal weight matrix (WLSMV) for models with ordinal 

indicators, asymmetric response thresholds, and/or involving four or fewer response categories (e.g., 

Finney & DiStefano, 2013; Morin, 2023).  

ESEM and bifactor-ESEM models, like any other model, can be assessed using traditional fit 

indices (Marsh et al., 2014), namely the comparative fit index (CFI; values ≥ .95 indicative of 

excellent fit and ≥ .90 indicative of acceptable fit), the Tucker-Lewis Index (TLI; values ≥ .95 

indicative of excellent fit and ≥ .90 indicative of acceptable fit), and the root mean square of error 

approximation (RMSEA; values ≤ .06 indicative of excellent fit and ≤ .08 indicative of acceptable fit; 

Hu & Bentler, 1999; Marsh et al., 2005; West et al., 2023). When comparing models (e.g., in tests of 

measurement invariance), decreases in CFI/TLI of ≤ .01 and increases in RMSEA of ≤ .015 provide 

evidence that the more parsimonious model should be retained (Chen, 2007; Cheung & Rensvold, 

2002). Although early statistical evidence suggested that similar interpretation guidelines seem to 

apply to model fit when relying on WLSMV estimation (Yu, 2002), more recent statistical research 

suggests that more lenient guidelines may be needed with WLSMV (Shi et al., 2018; Xia & Yang, 

2019).  

5.2. Rotation 

In ESEM and bifactor-ESEM, the choice of rotation method is crucial as it determines the 

size and direction of the estimated factor correlations and cross-loadings (Marsh et al., 2014; Morin et 

al., 2020). The two most popular rotation methods in ESEM and bifactor-ESEM are the geomin 

(oblique) rotation and the target rotation, which should both be oblique for ESEM (allowing factors to 

be correlated and orthogonal for bifactor-ESEM, as factors should not be correlated to achieve a 

proper variance decomposition; Morin, 2023; Morin et al., 2020). The geomin rotation is a 

mechanical procedure (i.e., it does not incorporate input from the researcher about the expected factor 

structure) with an epsilon value that researchers can change to reduce the size of cross-loadings or the 

size of factor correlations. Morin et al. (2013; see also Marsh et al., 2009) recommended using an 

epsilon value of .5 to maximally reduce factor correlations, which in turn helps to obtain more 

accurate estimates of relations between constructs. Asparouhov and Muthén (2009) concluded that a 

geomin rotation performs well for relatively simple models.  

Target rotation, conversely, is a non-mechanical procedure that is guided by the researchers’ 

theoretical assumptions. When using a target rotation, researchers are able to specify the main 

indicators for each construct, allowing these loadings to be freely estimated, but “targeting” all cross-

loadings to be as close to zero as possible while allowing them to be freely estimated. When based on 

a target rotation procedure, ESEM can be considered a fundamentally confirmatory method (Marsh et 

al., 2014; Morin et al., 2020). Informed targets can be used to specify a precise solution a priori and 

the available evidence supports the value of identifying informed targets when they are consistent 

with the true population model but problematic when they are not (e.g., Guo et al., 2019; Morin et al., 

2020). When this is done, researchers should be able to document and justify the relevance of their 

identified target. Otherwise, Morin (2023) recommended using this basic target approach.  

5.3. Bifactor Modeling 

In bifactor models, indicators load on to more than one factor, meaning that variance 

explanation is split between two latent variables. In other words, each observed variable is an 

indicator of both the G-factor and an S-factor (i.e., each observed variable comes with at least two 

main estimates of factor loadings, in addition to its cross-loadings, the first capturing its association 

with the G-factor and the second with its S-factor). The G-factor can be interpreted as reflecting the 

variance shared among all indicators (i.e., all items define the G-factor). Importantly, this is not the 

case for higher-order modeling, where the mediating role for the first-order factors means that the 

second-order factor represents a distilled estimate of an overall score rather than a more direct 
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estimate (Markson, 2019). However, the S-factors indicate the variance shared among a subset of 

indicators forming a subscale left unexplained by the G-factor. They reflect the specificity, or unique 

nature, of each subscale net of what it shares with the other subscales. Contrary to first-order factors 

estimated in a higher-order model, which reflect the subscale-relevant variance in its entirety 

(including that explained by the first-order factor and that explained by the second-order factor), the 

S-factors reflect the extent to which participants’ scores on each dimension deviate from their scores 

across all dimensions (i.e., on the G-factor).  

Because bifactor models divide the reliable (i.e., true score) item variance into two 

components (the G- and S-factors), factor loadings and reliability estimates tend to be smaller than 

those observed in higher-order models (Morin et al., 2020). As such, it has been suggested that more 

lenient guidelines should be applied when considering the composite reliability of S-factors from 

bifactor models (approaching ≥ .50, rather than .70). Morin et al. (2020) recommended that well-

defined G- and S-factors should ideally be accompanied by large enough loadings (minimally > .30, 

but ideally > .50 on at least one of the G- or S-factors) to support their interpretation as key indicators. 

In fact, bifactor solutions often reveal items that are predominantly associated with only one of these 

two sets of factors, but such findings do not indicate problems with these items. Instead, they 

demonstrate they these items represent stronger indicators of one layer of measurement (Morin et al., 

2020). It should also be noted that, although support for a bifactor solution requires that at least some 

S-factor retain some specificity, bifactor solutions are known to be robust to “vanishing” S-factors, 

which suggest that the items associated with these subscales mainly serve to define the G-factor and 

retain limited specificity once this G-factor has been taken into account (Morin et al., 2020).   

5.4. Construct-Irrelevant Sources of Psychometric Multidimensionality 

Thus far, we have considered instances of construct-relevant psychometric 

multidimensionality (i.e., when the multidimensional structure refers to conceptually important 

characteristics of the model). However, psychometric multidimensionality is not always a function of 

the constructs being measured; that is, it may sometimes be construct-irrelevant. One of the most 

common forms of construct-irrelevant psychometric multidimensionality is the inclusion of negatively 

and positively worded items in the same instrument. For instance, the Consider subscale of the 

Acceptance of Cosmetic Surgery Scale includes four positively worded items (e.g., “I have sometimes 

thought about having cosmetic surgery”) and one negatively worded item (“I would never have any 

kind of plastic surgery”). While the inclusion of negatively and positively worded items in the same 

instrument is often justified to minimise respondent acquiescence, affirmation, or agreement biases 

(Weijters et al., 2013), they also often create methodological artefacts (i.e., items with the same 

valence share commonalities unrelated to the constructs being measured; Marsh et al., 2010) that 

jeopardise the psychometric properties of an instrument (Suárez-Alvarez et al., 2018). Parallel 

wording – where items share a similar stem or wording (e.g., “In general, I have felt proud that I am 

more attractive than others” and “In general, I have felt proud of the effort I place on maintaining my 

appearance” from the BASES) – could also result in a similar methodological artefact (Marsh, 

Abduljabbar et al., 2013). The same would also apply when one asks different informants to complete 

the same measure in relation to one target individual (i.e., a child, their parents, and their teachers all 

rating the same behaviours). 

These sources of construct-irrelevant psychometric multidimensionality should be controlled 

so that they are not absorbed in other parts of the model. The two main methods to achieve this are: 

(a) the addition of correlated uniqueness among the relevant indicators, or (b) the addition of an 

orthogonal method factor reflecting the variance shared between relevant indicators. The latter has the 

advantage of resulting in an explicit and interpretable estimate of construct-irrelevant sources of 

variance, but also adds complexity to the resultant model and can create convergence problems. 

Irrespective of which method is used to control for construct-irrelevant psychometric 

multidimensionality, Morin (2023) recommended that the control is applied in an a priori manner (see 

also Schweizer, 2012). Additionally, when multiple sources of construct-irrelevant 

multidimensionality (e.g., negatively worded items and parallel wording) need to be controlled, it may 

be difficult to incorporate method factors for all sources. In these cases, Morin (2023) recommended 

using method factors for negatively worded items and correlated uniqueness for parallel wording. 

More complex multitrait-multimethod models are also available to account for more complex forms 

of construct-irrelevant psychometric multidimensionality (such as in the multiple-raters example), and 
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are discussed more extensively by Eid et al. (2023) and Morin (2023).  

5.5. Measurement Invariance and Differential Item Functioning 

A critical issue in the assessment of factor validity is whether an instrument measures the 

same construct(s) across individuals with a different demographic background (e.g., gender, racialised 

status, age), coming from different cultures or samples, or across time-points (e.g., longitudinal 

assessments, test-retest). If an instrument and its measurement properties behave differently in 

different groups of respondents or over time, then measurement biases could occur, leading to biased 

results (Guenole & Brown, 2014). Conversely, if an instrument operates in the same way across 

groups or over time, then it becomes possible to generalise findings, compare latent scores across 

groups, and examine differential relations between constructs across groups (Boer et al., 2018; Chen, 

2008). These assumptions can be verified using tests of measurement invariance (Millsap, 2011).  

Measurement invariance should be tested sequentially (Millsap, 2011; Morin, 2023; Widaman 

& Olivera-Aguilar, 2023). This sequential process begins with an examination of configural 

invariance (i.e., the same measurement model), followed by tests of weak invariance (i.e., equality of 

factor loadings), strong invariance (i.e., equality of item intercepts for continuous indicators or of 

response thresholds for ordinal indicators), strict invariance (i.e., equality of item uniqueness), latent 

variance-covariance invariance (i.e., equivalence of the factor variances and covariances), and latent 

mean invariance (i.e., equivalence of the factor means). The first four steps determine the presence of 

measurement biases related to the nature (configural), structure (weak), and the relative strength of 

item ratings for people with similar scores on the constructs (strong) or reliability (strict), whereas the 

final two steps assess the presence of group-based differences at the level of variance, covariances, 

and means (Marsh et al., 2009). Configural and weak invariance are a prerequisite to any comparison, 

strong invariance is a prerequisite to tests of latent mean differences, and strict invariance is a 

prerequisite of comparisons involving observed scores (Marsh et al., 2009). An online tool was 

recently developed by De Beer and Morin (2022) to help users generate Mplus syntax and results 

tables for tests of measurement invariance using continuous or ordinal items.  

There may be some situations where this taxonomy of measurement invariance cannot be 

realistically applied, such as when sample sizes are too small, when testing for measurement biases 

occurring as a function of continuous variables (e.g., age, body mass index), or when testing for 

measurement biases occurring as a joint function of multiple variables (and sometimes when authors 

want to assess the presence of interactions among predictors). Because of their complexity, these 

issues tend to be more frequent with ESEM and bifactor-ESEM than with CFA and bifactor-CFA. In 

these situations, scholars could instead conduct tests of differential item functioning (DIF) using 

multiple indicators multiple causes (MIMIC) models (Morin et al., 2013). MIMIC models involve the 

addition of one (or more) observed predictor(s) to a previously retained measurement model. Tests of 

DIF correspond to tests of strong invariance through the verification of whether the effect of the 

predictor on the item responses can be captured entirely by its effect on the factors, or whether it also 

influences item response beyond its impact on the factors. However, one drawback of the MIMIC 

approach is that it assumes the invariance of factor loadings but does not easily allow for a test of this 

assumption. So, whenever possible – at least when relying on categorical grouping variables – the 

complete taxonomy of measurement invariance tests should be implemented. However, when sample 

size is small, when authors want to jointly test for the joint effects of multiple predictors (i.e., 

assessing their unique effects beyond what they share with the others), when predictors are continuous 

(continuous variables should never be arbitrarily categorised), or when they want to assess 

interactions among predictors, then the MIMIC approach should be favoured.  

Morin et al. (2013) recommended testing for DIF using three alternative models, namely a 

null effects model (which assumes that the predictors have no effect on the factors and on the item 

responses), a saturated model (involving the free estimation of all paths linking the predictors to item 

responses while keeping the effects of the predictors on the factors constrained to 0), and a factors-

only model (involving the free estimation of all paths linking the predictors to the factors while 

keeping the effects of the predictors on the item responses constrained to 0). Comparing the null 

effects model and the saturated model tests whether the predictors influence item responses. When 

this is the case, comparing the saturated model and the factors-only model tests whether this influence 

can (if both models have a similar fit) or not (if the saturated model fits better) be fully explained in 

terms of their association with the factors. When the saturated model fits better than the factors-only 
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model (i.e., ∆CFIs/TLIs ≥ .01 and ∆RMSEAs ≥ .015), then there is evidence of monotonic DIF 

(Morin, 2023; Morin et al., 2013)1. Marsh et al. (2006, 2009, 2013) also proposed a hybrid approach 

in which multigroup tests of measurement invariance (e.g., gender as discrete categories) are 

combined with MIMIC test of DIF (e.g., age as a continuous variable). This approach can also be 

extended to test for the generalisation of the DIF conclusions as a function of the grouping variable.  

5.6. ESEM- and Bifactor-ESEM-Within-CFA 

One current limitation of ESEM and bifactor-ESEM is that it is not possible to test for partial 

invariance of factor loadings/cross-loadings, latent variances/covariances, and latent means. Another 

limitation is that all factors forming a single Set have to be related in the same manner to all other 

variables. Likewise, it is not possible to directly implement a higher-order structure on ESEM factors, 

and joint applications of ESEM with multilevel or mixture models are limited. One work-around 

some of these limitations is the ESEM-within-CFA approach (Marsh, Nagengast et al., 2013; Morin et 

al., 2013). ESEM-within-CFA imposes a number of restrictions similar to that typically imposed by 

the rotation procedure by converting an ESEM solution to a CFA approximation. More precisely, in 

ESEM-within-CFA, all factor variances are set to 1 and one referent indicator is selected per factor. 

For this referent indicator, all cross-loadings are fixed to their exact ESEM value. For other 

parameters, the values from the final ESEM solution are used as start values (using * in Mplus). 

Morin (2023) recommended selecting referent indicators with a strong main loading and weak cross-

loadings. The resulting solution will then have the same degrees-of-freedom and, within rounding 

error, the same chi-square, goodness of fit statistics, and parameter estimates as the original solution, 

and can be used as the starting point for the remaining analyses. There are two important caveats to 

this strategy. First, when the factors themselves are endogenous (i.e., predicted by something), then 

the main factor loading of the reference indicators should also be fixed to their ESEM values, and 

factor variances should be given a start value of 1 (*1) rather than being fixed to 1 (@1) (Morin & 

Asparouhov, 2018). Second, with bifactor-ESEM models, the factor covariances have to be fixed to 0 

(rather than simply rotated to 0) to preserve the orthogonality of the factors, which results in a 

bifactor-ESEM-within-CFA model that will differ in terms of degrees-of-freedom from the original 

model by a number corresponding to the number of correlations fixed to 0 (Morin, 2023).  

5.7. A Note on Power and Sample Size 

Researchers may have concerns about adequate power, that is, the ability to detect effects 

present in a population as being statistically significant in their sample (Feng & Hancock, 2023). 

Power analyses can be used to determine sample size requirements a priori (e.g., when designing a 

study) or post hoc (i.e., to assess the power linked to specific aspects of the analyses once data has 

already been collected). Although issues of power can sometimes be important (e.g., when planning a 

data collection process to ensure recruitment of a large enough sample), Morin (2023) argued that 

concerns over sample size may not be especially pressing when it comes to ESEM and bifactor-

ESEM. This is because power analyses depend on many factors that are difficult to know a priori 

(e.g., effect size, the number of indicators per factor, the number of factors, the strength of the factor 

loadings, the quantity and type of missing data), which make it difficult to propose sample size 

guidelines, and because these analyses are typically robust to very small sizes (e.g., De Winter et al., 

2009). Additionally, in ESEM and bifactor-ESEM measurement models, the interpretation of the 

results does not rely on statistical significance but on the relative size of loadings, cross-loadings, and 

factor correlations. As such, power is not an issue for comparisons of measurement models using the 

sequential strategy outlined above and would normally only become an issue when moving to more 

complex predictive models.  

In practice, researchers faced with very small sample sizes are much more likely to face a 

different problem in analyses, that of non-convergence. As Morin (2023) has noted, there is always a 

limit of the type of model that can be estimated using any specific sample. When one goes beyond 

this limit, analyses will stop converging and no attempt to rectify this will achieve convergence. 

Because convergence problems typically arise well before power becomes an issue, results based on 

converging solutions can be taken as a safeguard against a lack of power. Our recommendation, 

therefore, is for researchers to recruit as large a sample size as is feasible (balancing issues such as 

time, cost, effort) and to use their best judgement to determine whether an adequate sample size has 

been achieved. Then, when analysing their data, if they face convergence issues that are impossible to 

resolve, they should think about ways to simplify their model (removing variables or subscales, 
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testing different parts of the model separately, or even using factor scores for some of their 

constructs). Where necessary, traditional approaches for sample size estimation used for Structural 

Equal Modeling (e.g., the non-centrality parameter, a model’s potential to obtain an acceptable 

RMSEA value, or Monte Carlo simulations; Muthén & Muthén, 2002; Wolf et al., 2013) could be 

used.  

5.8. A Note on Scoring 

We are often asked to discuss the implications of these types of measurement models for 

scoring decisions. More precisely, many researchers, as well as practitioners working with surveys for 

the purposes of assessment, monitoring progress, and/or assessing success, rely on manifest scores. 

Manifest scores represent the sum, or the average, of the responses provided by participants on the 

various items forming a single subscale. Such manifest scores are flawed for at least two different 

reasons. To understand their limitation, let us first consider a simple instrument, involving a single 

unidimensional four-item scale (each rated on a 1 to 4 response scale). A participant selecting the 

response choice “2” on Item #1, “4” on Item #2, “3” on Item #3, and “2” on Item #4 would thus 

obtain a manifest average score of 2.75 or a manifest sum score of 11. The first limitation of this 

procedure is that all items are assumed to have the same weight, or to contribute equivalently to the 

definition of the constructs. Decades of psychometric research have demonstrated that this is rarely 

the case, and that some items provide a better reflection of constructs than others. When relying on 

factor analyses, the factor loadings linking each item to their factor reflect how well each of them 

represents the factor.  

So, in theory, to obtain more accurate scores, one could use the unstandardised CFA factor 

loadings2 associated with each item to weight them before calculating the manifest score. If these 

loadings were 1.25, 0.85, 1.51, and 0.91, then the resulting average weighted manifest score would be 

of 3.06 and the sum weighed score would be 12.25. Obviously, to use such a weighted scoring 

procedure, one would need to rely on unstandardised factor loadings obtained in a representative 

(normative) sample. However, even these weighted scores would be limited, as they would be based 

on all of the information included in the item, when we know that each item does include a part of 

information unrelated to the construct of interest, including random measurement error. In factor 

analyses, the latent factor is based on a weighted combination of the part of the items that is 

connected to the factor and excludes this unique information (that is absorbed into the item 

uniquenesses), resulting in perfect reliability. When relying on instruments on which responses match 

a CFA structure, these two types of biases are routinely assumed to be minimal, at least in applied 

contexts, while they do highlight the value of latent variable models to achieve accurate research 

results untainted by unreliability. Moreover, these biases will be substantially reduced when responses 

to an instrument are best captured by large factor loadings (i.e., more reliable) similar in size (limiting 

the need for weights) across items. In summary, even in a very basic CFA model, average or sum 

scores are not ideal, although their use remain quite frequent.  

When we move to more complex models including a global/specific structure (bifactor-CFA, 

bifactor-ESEM), models including cross-loadings (EFA, ESEM, and bifactor-ESEM), and even 

models including correlated uniquenesses or method factors, manifest scoring procedures become 

even more problematic. For models involving cross-loadings, we could theoretically use the 

unstandardised loadings and cross-loadings in a similar manner to obtained weighted manifest sum 

scores based on all items (manifest average scores would not be appropriate, as the average would be 

based on a majority of cross-loadings, whereas their sum ensures that cross-loadings have less impact 

than main loadings). However, the unreliability issue would become even more problematic, as 

weighing secondary items as a function of their cross-loadings would still rely on the whole 

information included in this item, rather than on the much smaller part of these items explained by the 

model. As these items are more numerous than the main indicators, they should have a minimal 

contribution that is likely to be at least doubled by the lack of control for unreliability. Furthermore, 

with bifactor models, there is simply no way to achieve the global/specific variance separation that 

should be a prerequisite to achieving manifest scores.  

From a research perspective, the recommendation is quite clear: all researchers, particularly 

those relying on multidimensional measures, should avoid relying on manifest scoring and base their 

research on latent variable models (i.e., the factors – derived from factor analysis – that account for 

variation and covariation in a set of items). Latent variable models are not only controlled for 
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unreliability, they also provide empirically optimal weights and variance separation. Fortunately, 

these models are reasonably robust to smaller sample sizes (e.g., De Winter et al., 2009) and can be 

built in sequence. More precisely, even with smaller sample sizes, it is often possible to estimate 

preliminary measurement models on a subset of constructs. Factor scores can then be saved from 

these models and used on primary analyses instead of manifest scores. Factor scores do provide a 

partial, albeit imperfect, correction for unreliability (e.g., Skrondal & Laake, 2001), but have the clear 

advantage of preserving the measurement structure (and variance decomposition) of the models from 

which they were taken (Morin, 2023; Morin et al., 2020).  

From a practical perspective, things are more complex, as the proper scoring of 

multidimensional instruments would ideally require the development of computerised algorithms, and 

those would require normative data to avoid capitalising on the unique nature of specific samples. In 

the meantime, as noted by Perreira et al. (2018), the Mplus statistical package could be used to 

generate factor scores based on the exact parameter estimates obtained in an optimal model (fixing 

start values using the @ function). Scores from new participants will simply need to be added at the 

end of a larger dataset. Otherwise, scoring procedures could be conducted so as to ignore cross-

loadings, although this should be done while acknowledging that the distinctiveness of the factors will 

be substantially reduced by a magnitude similar to the difference in the size of the CFA versus ESEM 

factor correlations. With bifactor models, the G-factor could theoretically be calculated as the 

(weighted or not) sum or average of all items used to define it. Although the same can be done with S-

factors, one would need to remember that these should not be interpreted in and of themselves, but in 

terms of deviations from the G-factor. For instance, for someone with a score of “5” on the G-factor 

and a score of “6” on an S-factor, the S-factor score would need to be interpreted as a positive 

deviation (higher score) of one unit on the S-factor. In any case, scoring is clearly an area where 

further developments will be needed.  

6. An Applied Example 

Despite the many benefits of ESEM and bifactor-ESEM, these approaches remain 

infrequently used in body image research. There may be a number of reasons for this, including the 

perception that these methods are relatively complex analytically and a lack of understanding and 

training among researchers about how to use these methods and how to score measures and interpret 

findings. Additionally, it is currently only possible to estimate ESEM using Mplus, which is a 

relatively expensive program that requires working with syntax (rather than drop-down menus), 

although the Mplus syntax remains language-based (rather than code-based). In the remainder of this 

paper, we provide a practical tutorial on how to estimate ESEM and bifactor-ESEM in Mplus. 

Specifically, we use the Acceptance of Cosmetic Surgery Scale (Henderson-King & Henderson-King, 

2005) to provide an overview of ESEM and bifactor modeling, guidelines for estimating and 

interpreting these models, and our Mplus syntax in Supplementary Materials.   

6.1. The Acceptance of Cosmetic Surgery Scale 

The Acceptance of Cosmetic Surgery Scale (ACSS; Henderson-King & Henderson-King, 

2005) is a 15-item instrument originally designed to assess multidimensional attitudes toward 

cosmetic surgery. Based on multiple principal components analyses (commonly employed at the time 

for scale validation) conducted using adult responses obtained in the United States, Henderson-King 

and Henderson-King (2005) originally extracted a 3-component model assessing Intrapersonal (self-

oriented benefits of cosmetic surgery; 7 items), Social (social motivations for cosmetic surgery; 5 

items), and Consider (likelihood of obtaining cosmetic surgery; 5 items) components. Two anomalous 

items from the Intrapersonal component were dropped and a third principal component analysis 

realised on the same dataset supported extraction of a 15-item, 3-component model of ACSS scores. 

Additionally, although higher-order functioning was not directly assessed, Henderson-King and 

Henderson-King (2005) indicated that it was permissible to compute an overall (higher-order) ACSS 

score comprising all 15 items, which in their study had adequate scale score reliability (Cronbach’s  

= .91 to .93).  

However, beyond this original study, further research examining the factor validity of the 

ACSS is equivocal (for a recent review, see Lazarescu et al., 2023). Thus, scholars using EFA have 

variously extracted a unidimensional model including all 15 items (Swami et al., 2012), various 

permutations of 2-factors models (Swami, 2010; Wu et al., 2020), or the original 3-factor model 

(Swami et al., 2011). For models with two and three factors, cross-loadings were common, suggestive 
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of at least some multidimensionality. Other studies have directly relied on CFA (Jovic et al., 2017; 

Meskó & Lang, 2021) and, although these studies have found that the 3-factor model of ACSS scores 

has adequate fit to the data, this was typically only achieved following the post hoc addition of 

various correlated uniquenesses. Lazarescu et al. (2023) recently suggested that the difficulty in 

replicating the 3-factor structure of the ACSS may be due to the failure to account for cross-loadings. 

In examining the psychometric properties of a Romanian adaptation of the ACSS, Lazarescu 

et al. (2023) relied on a 2-step strategy consisting of an initial EFA followed by a sequential strategy 

to compare alternative models (CFA, ESEM, bifactor-CFA, and bifactor-ESEM). EFA results 

supported a 3-factor solution mirroring the original factor structure reported by Henderson-King and 

Henderson-King (2005), revealing small cross-loadings. Comparison of the alternative models 

indicated that all four variants had acceptable fit, but that the bifactor-ESEM model had a 

significantly improved fit relative to the other models. Factor correlations were relatively high in 

CFA, but substantially reduced in ESEM. The bifactor-ESEM solution revealed a well-defined G-

factor and reasonably well-defined S-factors. This bifactor-ESEM model was also invariant across 

gender and showed adequate patterns of convergent validity (Lazarescu et al., 2023).  

6.2. The Data Used in the Present Illustration 

We rely on the complete dataset used by Lazarescu et al. (2023) to demonstrate the sequential 

strategy advocated by Morin (2023) and tests of measurement invariance. Briefly, this dataset 

includes responses from 1,275 Romanian participants (889 women, 385 men) ranging in age from 18 

to 73 years (M = 24.60, SD = 9.46). All participants completed the Romanian version of the 15-item 

ACSS, which is the focus of the present analyses. The dataset also contained responses to Romanian 

versions of the Body Appreciation Scale-2 (Tylka & Wood-Barcalow, 2015), the Body Image 

Screening Questionnaire for Eating Disorder Early Detection (BISQ; Jenaro et al., 2011), and the 

Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965). Unlike Lazarescu et al. (2023), who 

conducted a sequential assessment using half of their total sample, we rely on the total sample for 

illustrative purposes. Further details on this dataset are available in Lazarescu et al. (2023). 

6.3. Analyses 

6.3.1. Model estimation. All analyses were performed using Mplus 8.10 (Muthén & 

Muthén, 2022) and the MLR estimator. There were no missing responses on ACSS items in the 

dataset. One ACSS item (Item #10) was reverse-coded so that all reported loadings were positive. The 

3-factor and bifactor solutions of the ACSS were examined using CFA and ESEM3 (see pp. T3-6 in 

the Supplementary Materials). As recommended in Section 5.2., oblique geomin (epsilon value of .5) 

and target rotations were used for ESEM solutions and orthogonal bifactor-geomin (epsilon value of 

.5) and orthogonal bifactor target rotations were used for bifactor-ESEM solutions. It is important to 

note that solutions based on the same items and including the same numbers of factors are 

mathematically equivalent in ESEM and bifactor-ESEM, which means that changes of rotation 

procedures always converge on models with an equivalent level of fit to the data (i.e., rotational 

indeterminacy; Morin et al., 2020). For this reason, we focus on results obtained with target rotation 

in the main body of this text, but still provide the syntax required to estimate their goemin 

counterparts in the Supplementary Materials.  

6.3.2. Construct-irrelevant psychometric multidimensionality. Only one item (Item #10) 

is negatively worded in the ACSS, which also includes no parallel wording. Thus, for purposes of 

illustrating how to control for construct-irrelevant sources of psychometric multidimensionality (as 

discussed in Section 5.3), in addition to Item #10, we arbitrarily selected two additional items (Items 

#5 and 15) to showcase the incorporation of correlated uniqueness (CU) or of an orthogonal method 

factor (MF) to the model (see p. T8 in the Supplementary Materials).  

6.3.3. Model fit and comparisons. As recommended in Section 3, parameter estimates (i.e., 

loadings, cross-loadings, correlations, composite reliability) from all solutions were carefully 

examined. Model fit and model comparisons were also examined using the fit indices (CFI, TLI, 

RMSEA) and interpretation guidelines described in Section 5.1.  

6.3.4. ESEM- and bifactor-ESEM-within-CFA. ESEM- and bifactor-ESEM-within CFA 

solutions were respectively estimated based on the original ESEM and bifactor-ESEM solutions (see 

pp. T10-12 in the Supplementary Materials). Values of the parameters used to estimate the ESEM- 

and bifactor-ESEM-within CFA solution were obtained from the original ESEM and bifactor-ESEM 

solutions (by adding “SVALUES” in the “OUTPUT” section of the Mplus input file). These can be 
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found in the Mplus output section labelled “CFA MODEL COMMAND WITH FINAL ROTATED 

ESTIMATES USED AS STARTING VALUES”. ESEM- and bifactor-ESEM-within CFA solutions 

were then estimated as recommended in Section 5.6. 

6.3.5. Predictive model with bifactor-ESEM-within-CFA. For illustrative purposes, the 

bifactor-ESEM-within-CFA solution was used to estimate a model in which the scores on the ACSS 

latent factors (G- and S-factors) were used to predict scores on measures of body appreciation, 

symptoms of disordered eating, and self-esteem (see pp. T14-16 in the Supplementary Materials). 

Although the basic ESEM and bifactor-ESEM framework allow us to simultaneously use all factors 

from a single Set in predictions, our main objective was to examine the added-value of the S-factors 

relative to that of the G-factor in the prediction of body appreciation, symptoms of disordered eating, 

and self-esteem. As these tests involve using different predictions for the G- versus S-factors, we 

needed to rely on bifactor-ESEM-within-CFA to conduct these analyses. Two models were examined. 

In the first model, the paths from the S-factors to body appreciation, symptoms of disordered eating, 

and self-esteem were fixed at 0, whereas those from the G-factor were free. In the second model, all 

paths from the G- and S-factors of the ACSS to body appreciation, symptoms of disordered eating, 

and self-esteem were free.  

6.3.6. Measurement invariance. Measurement invariance of the solution across gender was 

examined as recommended in Section 5.5. (i.e., configural, weak, strict, latent variance-covariance, 

and latent mean invariance; see pp. T17-24 in the Supplementary Materials). Similar analyses were 

conducted to test the invariance of the bifactor-ESEM solution across samples (see pp. T25-31 in the 

Supplementary Materials).  

6.3.7. Differential Item Functioning. The presence of measurement bias in the ACSS was 

also examined through tests of DIF, as recommended in Section 5.5 (i.e., null effects model, saturated 

model, and factors-only model; see pp. T32-35 in the Supplementary Materials). More specifically, in 

the ESEM model, DIF was examined as a function of age and body mass index (BMI), whereas in the 

bifactor-ESEM model, DIF was examined as function of sample, gender, and sample x gender. To 

ease interpretations and facilitate estimation, age and BMI were standardised. 

6.3.8. Hybrid MIMIC. As recommended in Section 5.5, hybrid MIMIC was used to 

examine the association between predictors (continuous and categorical) and the ACSS items 

responses and latent factors as a function of gender and the two split-half samples used in Lazarescu 

et al. (2023). In ESEM, predictors were age and BMI, whereas in bifactor-ESEM, predictors were 

age, gender, and BMI (see pp. T36-45 in the Supplementary Materials). To ease interpretations and 

facilitate estimation, age and BMI were standardised. These models were developed from the most 

invariant multiple-group model identified in the gender (ESEM) and sample (bifactor-ESEM) 

invariance models, to which the predictors were included. The first three models (null effects, 

saturated, and factors-only) were the same as those used in the DIF tests and were freely estimated 

across gender (ESEM) and samples (bifactor-ESEM). Then, the most appropriate model was retained 

and compared to an alternative model in which associations were constrained to be equal across 

gender (ESEM) and samples (bifactor-ESEM).  

6.4. Results 

6.4.1. Sequential comparisons. Table 2 presents the goodness-of-fit indices for all 

measurement models. The CFA (Model 1-1) and bifactor-CFA (Model 1-5) solutions both had an 

adequate level of fit to the data (CFI and TLI > .90 and RMSEA ≤ .08). The 3-factor ESEM solution 

(Model 1-2) had an excellent level of fit to the data and displayed a substantial improvement in model 

fit relative to the CFA solution (∆CFI = +.043/+.044, ∆TLI = +.042/+.040, ∆RMSEA = -.024/-.022). 

Finally, the bifactor-ESEM solution (Model 1-6) also had an excellent level of fit to the data, and 

displayed a substantial improvement in model fit relative to the bifactor-CFA solution (∆CFI = +.021, 

∆TLI = +.020, ∆RMSEA = -.026), as well as a noteworthy increase in fit relative to the ESEM 

solution (∆CFI = +.011, ∆TLI = +.013, ∆RMSEA = -.010). These results suggest that, based solely on 

model fit, the bifactor-ESEM solution seems to be the optimal solution for ACSS responses. 

However, Morin (2023; also see Morin et al., 2020) noted that a careful examination of 

parameter estimates, composite reliability, and factor correlations was needed to support this 

conclusion. As such, we first compare the CFA and ESEM solutions, before contrasting the optimal 

model with its bifactor counterpart. The detailed parameter estimates from the CFA, bifactor-CFA, 

ESEM, and bifactor-ESEM solutions are respectively reported in Tables 3 to 6. In the CFA solution 
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(see Table 3), factor loadings were reasonably high (|λ| = .653 to .905) and associated with adequate 

composite reliability coefficients (ω = .885 to .930, Mω = .906). However, factor correlations 

remained high (Mr = .676). The ESEM solution (see Table 4) resulted in similarly well-defined 

(|λ| = .417-.906) and reliable factors (ω = .875 to .927, Mω = .901), but also estimates of factor 

correlations that were slightly reduced relative to the CFA solution (Mr = .636), thus supporting the 

value of the ESEM solution.  

Turning our attention to the bifactor-ESEM solution, this solution revealed a well-defined 

(|λ| = .521 to .851) and reliable (ω = .959) G-factor, as well as reasonably well-defined Intrapersonal 

(|λ| = .440 to .594, ω = .789) and Consider (|λ| = .377 to .539, ω = .809) S-factors. In contrast, the 

Social S-factor was slightly more weakly defined (|λ| = -.082 to .718), which seems to be primarily 

due to two items (Items #11 and 12) that essentially serve to define the G-factor, but retained an 

acceptable level of reliability (ω = .723). Overall, these sequential steps support the superiority of the 

bifactor-ESEM representation of the ACSS. 

6.4.2. Construct-irrelevant psychometric multidimensionality. Adding correlated 

uniqueness or an orthogonal method factor among three items (#5, 10, and 15) in the retained ESEM 

(Models 1-3 and 1-4) and bifactor-ESEM (Models 1-7 and 1-8) solutions did not substantively change 

fit indices, consistent with the lack of utility of these controls in the present study. We note, however, 

that instruments truly including wording artefacts (reversed or parallel wording) need to incorporate 

such controls from the start to all of their models (Morin et al., 2020), as the decision to include or 

exclude them is not a matter of model fit, but anchored in the need to control for a true 

methodological artefact (better yet, instrument developers should ensure, as far as possible, that novel 

instruments do not include methodological artefacts).  

6.4.3. ESEM-within-CFA, bifactor-ESEM-within-CFA, and predictive analyses. The 

final ESEM and bifactor-ESEM solutions were converted to their ESEM-within-CFA and bifactor-

ESEM-within-CFA for illustrative purposes (see syntax provided in the Supplementary Materials). 

The bifactor-ESEM-within-CFA model was then used to test the predictive added-value of the S-

factors relative to that of the G-factor. Both models had excellent levels of fit to the data: (a) G-factor 

only: χ2(99) = 396.124, CFI = .976, TLI = .963, RMSEA = .049 (90% CI = .044, .054); (b) G- and S-

factors: χ2(90) = 274.512, CFI = .985, TLI = .975, RMSEA = .040 (90% CI = .035, .046). 

Furthermore, the results suggested that the S-factors had a meaningful contribution to prediction 

beyond that of the G-factor, as indicated by model fit improvement (i.e., ∆TLI = +.012). More 

precisely, as reported in Table 7, the G-factor, the Social S-factor, and the Consider S-factors all 

significantly and negatively predicted body appreciation and self-esteem, and positively predicted 

symptoms of disordered eating. The Intrapersonal S-factor also significantly and negatively predicted 

symptoms of disordered eating and positively predicted self-esteem. 

6.4.4. Measurement invariance. As reported in Table 2, ESEM results (Models 2-1 to 2-7) 

supported the weak and strong invariance, but not the strict invariance, of this solution as function of 

gender. Examination of the freely estimated uniquenesses from the model of strong invariance and of 

the modification indices form the failed model of strict invariance suggested that the lack of strict 

invariance seemed limited to two items (Items #1 and 15). Allowing the uniquenesses to be freed 

across gender resulted in a satisfactory model of partial strict invariance. The invariance of the latent 

variances/covariances was also supported, but not that of the latent means. This last result revealed 

that compared to men, women presented significantly higher latent means on the Intrapersonal (+.52 

SD, p < .001) and Consider (+.82 SD, p < .001) factors. In contrast, bifactor-ESEM results (Models 

3.1 to 3.6) supported the full measurement invariance (weak, strong, strict, variance and covariances 

and latent means) of this solution across samples. 

6.4.5. Differential Item Functioning. As reported in Table 2, the ESEM results revealed that 

the saturated (Model 4-2) and factors-only (Model 4-3) models did not result in a substantial 

improvement in model fit relative to the null effects model (Model 4-1). These results indicate a lack 

of DIF, as well as a lack of association between age or BMI and scores on the ACSS latent factors. In 

contrast, the bifactor-ESEM results revealed a substantial improvement in model fit in the saturated 

(Model 5-2) and factors-only models (Model 5-3) relative to the null effects model (Model 5-1). This 

suggests an association between at least some of the predictors (sample, gender, and their interaction) 

and ACSS responses. However, the factors-only model resulted in a similar level of fit to the saturated 

model (∆CFI = -.005, ∆TLI = +.006, ∆RMSEA = -.004), supporting a lack of DIF and effects limited 
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to the factors themselves. More specifically, these results showed that gender significantly and 

positively predicted scores on the Consider S-factor (b = .753, SE = .274, p = .006, β = .327), 

suggesting that women presented higher values on this S-factor relative to men. 

6.4.6. Hybrid MIMIC. As shown in Table 2, the estimation of the Hybrid MIMIC models 

started from the most invariant ESEM (Gender Model 2-6: latent variances-covariances invariance) 

and bifactor-ESEM (Sample Model 3-6: latent means invariance) solutions. The ESEM results 

revealed that both the saturated (Model 6-2) and factors-only (Model 6-3) models did not result in a 

substantial improvement in fit relative to the null effects model (Model 6-1). These results indicate a 

lack of DIF, as well as a lack of association between age, BMI, and scores on the ACSS latent factors 

as a function of gender and sample. Although we do test the equivalence (and found support for it) of 

the factors-only predictions as a function of gender groups for illustrative purposes, the initial 

selection of the null effects models makes this last test unnecessary. In contrast, the bifactor-ESEM 

results revealed a substantial improvement in model fit for the saturated (Model 7-2) and factors-only 

models (Model 7-3) relative to the null effects model (Model 7-1). This suggests an association 

between at least some of the predictors (age, gender, and BMI) and ACSS responses. Additionally, 

the factors-only model resulted in a similar level of model fit to the saturated model (∆CFI = -.006, 

∆TLI = -.001, ∆RMSEA = +.001), supporting a lack of DIF as a function of age, gender identity, and 

BMI. Finally, the last model (Model 7-4), built from the retained factors-only model, showed that 

associations between the predictors (age, gender, and BMI) and the G- and S-factors of the ACSS 

were equivalent across samples. Table 8 presents results from the invariant factors-only model (Model 

7-4). First, these results showed that age significantly and negatively predicted scores on the Consider 

S-factor. This means that older participants presented significantly higher scores on the Consider S-

factor relative to younger participants. Second, gender significantly and positively predicted scores on 

the Consider S-factor. Thus, women presented significantly higher scores on the Consider S-factor 

relative to men. Finally, BMI significantly and positively predicted scores on the Social S-factor. This 

means that participants with higher BMIs presented significantly higher scores on the Social S-factor 

relative to participants with lower BMIs.  

7. Conclusion 

In this paper, we have sought to introduce ESEM and bifactor-ESEM models to body image 

researchers, and highlight the applicability of these approaches through our re-analysis of an existing 

dataset. Broadly speaking, the results of our re-analysis are consistent with other recent studies 

showing that ESEM and bifactor-ESEM models provide an improved representation of responses to 

multidimensional body image measures relative to alternative CFA-based models (e.g., Anastasiades 

et al., 2022; Lazarescu et al., 2023; Maïano et al., 2021, 2023; Morin & Maïano, 2011; Morin et al., 

2018; Swami, Maïano, Furnham et al., 2022; Swami, Maïano, & Morin, 2022; Swami, Maïano, Todd 

et al., 2021; Swami, Maïano, Wong et al., 2021). We also showed how the basic ESEM framework 

can be extended with tests of measurement invariance, DIF, and a hybrid MIMIC model. In making 

our Mplus syntax available to researchers (in our Supplementary Materials), we also hope to facilitate 

future use of these analytic approaches in body image research. 

Our general argument here is that ESEM and bifactor-ESEM should be seen as valuable 

analytic frameworks for body image scholars. In fact, the failure to consider implementing these 

models is likely to result in biased, artefactual, or misleading conclusions, which in turn could delay 

theoretical understandings of key issues in the body image literature. Moreover, from a practical 

point-of-view, such biases may potentially be harmful if misleading models of body image constructs 

come to be applied in clinical practice. As such, it is our hope that this paper helps body image 

scholars – those conducting primary research, reviewing manuscripts, developing theory, applying 

existing models of body image to new populations, and so on – to more fully understand the value and 

purpose of ESEM and bifactor-ESEM. 

Our key message here is that ESEM and bifactor-ESEM models should allow body image 

scholars to more fully, realistically, and comprehensively investigate questions regarding the proper 

conceptualisation and modeling of body image constructs, as well as how best to conceptualise the 

relations between these constructs and antecedent or outcome variables (Meadows & Higgs, 2020). In 

doing so, we suggest that the apparent complexity of these models should be embraced rather than 

feared: it is only by going through this process, at least once, that scholars will be able to arrive at 

more realistic and appropriate models and theories of body image. Conversely, failure to consider the 



EXPLORATORY STRUCTURAL EQUATION MODELING  18 

full range of possible models – or worse, choosing to ignore such models – will likely interfere with 

theoretical and conceptual developments in the field. To use the example of the ACSS, ESEM and 

bifactor-ESEM models may help to resolve some of the equivocal findings vis-à-vis the factor validity 

of this instrument (Lazarescu et al., 2023), thereby helping drive forward our understanding of 

cosmetic surgery acceptance. 

Over the years, some have erroneously argued that including cross-loading items means 

accepting modeling a source of noise that is likely to mask poorly constructed items or to taint the 

meaning of our constructs (Stromeyer et al., 2015). This flawed argument, however, ignores the fact 

that statistical research has demonstrated that including cross-loadings helped to better capture the 

true meaning of our constructs (Asparouhov et al., 2015; Mai et al., 2018; Wei et al., 2022). It also 

ignores the fact that incorporating cross-loadings helps, rather than interferes with, researchers’ efforts 

to properly locate problematic items in their measures (Morin & Maïano, 2011). A related concern is 

that cross-loadings should not be theoretically permissible and that scholars should be aiming for 

instruments that adequately capture target constructs without being associated with other constructs 

(Stromeyer et al., 2015). Without disagreeing with the idea that the quest for perfect items is a valid 

endeavour, we have to note (as others have done before us; Asparouhov et al., 2015) that such “pure” 

items are rarely present in psychological research more generally, and in body image research more 

specifically. Seeking purity when measuring a complex object of study such as body image appears to 

us an unrealistic objective. Indeed, even very carefully constructed instruments are likely to present at 

least some degree of true association with non-target constructs (Asparouhov et al., 2015), which in 

turn means that scholars need to account for cross-loadings in their modeling. At the very least, 

ESEM may allow scholars to more fully understand the impact of cross-loadings on instrument 

functioning and identify items that may be in need of revision.  

Having said all this, there are several issues that should be considered by scholars intending to 

use these novel methodologies in their research. The first is that, given that the relative youth of 

ESEM and the relatively recent resurgence of interest in bifactor models, the best and most 

appropriate ways to use these methodologies are still being expanded upon (Morin, 2023; Sellbom & 

Tellegen, 2019). As such, it is vital that scholars interested in ESEM and bifactor-ESEM keep up-to-

date on best practice, guidance, and recommendations. In this regard, we note that the website 

associated with the Mplus statistical package has thus far done a very good job at posting recent 

developments related to the use of these models (https://www.statmodel.com/ESEM.shtml). 

Relatedly, and as we noted earlier, for scholars interested in instrument construction and test 

adaptation particularly, different approaches are available and it is unlikely that any one approach will 

be universally appropriate. While we have reviewed some strategies that are available to researchers 

in Section 4, we encourage scholars to choose the approach that it is most suitable to their study 

objectives and to clearly justify said approach in any write-up. Doing so will ensure that readers will 

have a clear understanding of decision-making processes and be able to clearly situate their analyses.  

In summary, we have sought to introduce ESEM and bifactor-ESEM to body image 

researchers, which we hope will lead to wider uptake of these analytic methods in the body image 

literature. It is our view that ESEM and bifactor-ESEM have the potential to drive forward theorising 

and conceptualisations in the field of body image, but only if these methods are properly understood 

and results correctly interpreted. Of course, ESEM and bifactor-ESEM are not panaceas for all issues 

of factor validity facing body image scholars, but a fuller understanding of these methods will 

undoubtedly offer scholars vital tools.  

Footnotes 
1We do not recommend use of the standardized root mean square residual (SRMR) for model fit 

assessment, as it is sample size-dependent (Marsh et al., 2005) and its performance varies widely as a 

function of a range of conditions.  
2In factor analyses, we only report standardised factor loadings, as these have a direct interpretation 

that is independent from the response scale used to score the items. More precisely, the square of the 

factor loading (also called communality) reflects the proportion of the item variance explained by the 

factor (and 1 minus the square loadings thus refers to the proportion of the item variance not 

explained by the factor, or its uniqueness). The unstandardised factor loadings are typically less useful 

as they are connected to the scaling of the items, but are those that we would need to use to obtain 

weighted scores.  

https://www.statmodel.com/ESEM.shtml
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3When it necessary to conduct an initial EFA (e.g., development of a novel instrument, test 

adaptations, etc.), this can also be conducted in Mplus. The relevant syntax for this can be found in 

Example 5.27 of the Mplus User’s Guide (Muthén & Muthén, 2022).  
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Table 1 

A Summary of the Key Models Discussed in this Paper. 

Model Description 

Exploratory factor analysis (EFA) • Aims to estimate the smallest number of factors from multiple indicators (items) 

• All cross-loadings are freely estimated 

• Unable to incorporate or control for method effects (e.g., covariance between similarly 

worded items on an instrument) 

• Measurement invariance cannot be estimated (although it can be estimated using ESEM) 

Confirmatory factor analysis (CFA) • Aims to estimate a series of correlated factors (or a single factor) from multiple indicators 

(items) 

• Does not incorporate cross-loadings or correlated uniquenesses 

• Assumes that all indicators correspond to a single factor (i.e., assumes “pure” factors) 

Exploratory structural equation modeling (ESEM) • Overarching framework that connects EFA measurement with Structural Equation Modeling 

• Can be used in both exploratory and confirmatory ways 

• Used to add flexibility to an EFA measurement model (correlated uniquenesses, method 

factors, measurement invariance, etc.) 

• Can be used to test relations between EFA factors and additional latent or observed 

variables 

Higher-order analyses • Can be estimated with CFA or with ESEM 

• Assesses a series of first-order factors from multiple indicators (items) and then estimates 

one or more overarching factors from these first-order factors 

• Relies on an unrealistic proportionality constraint 

Bifactor analyses • Can be estimated with CFA or with ESEM 

• Estimates a global overarching construct (the G-factor) from the variance shared across all 

indicators (items), as well as a series of specific constructs (S-factors) from the variance 

shared among a subset of indicators but not explained by the global construct 

• Both the G- and S-factors are seen as meaningful 
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Table 2 

Goodness-of-Fit Statistics for the Acceptance of Cosmetic Surgery Scale 

Models No Description χ² df CFI TLI RMSEA 
RMSEA 90% CI 

CM ∆Rχ²  df ∆CFI ∆TLI ∆RMSEA 
LB UB 

CFA 1-1 CFA 817.853* 87 .931 .916 .081 .076 .086 - - - - - - 
ESEM 1-2 ESEM 325.645* 63 .975 .958 .057 .051 .063 - - - - - - 

1-3 ESEM with CU 332.101* 60 .974 .955 .060 .053 .066 - - - - - - 
1-4 ESEM with MF 329.464* 60 .974 .955 .059 .053 .066 - - - - - - 

B-CFA 1-5 B-CFA 458.943* 75 .964 .949 .063 .058 .069 - - - - - - 
B-ESEM 1-6 Bifactor-ESEM 207.360* 51 .985 .969 .049 .042 .056 - - - - - - 

1-7 Bifactor-ESEM with CU 202.602* 48 .985 .968 .050 .043 .058 - - - - - - 
  1-8 Bifactor-ESEM with MF 201.798* 48 .985 .968 .050 .043 .057 - - - - - - 
ESEM: MI 
across gender 

2-1 Configural invariance 399.796* 126 .972 .954 .058 .052 .065 - - - - - - 
2-2 Weak invariance 434.458* 162 .973 .964 .051 .046 .057 2-1 37.19 36 +.001 +.010 -.007 
2-3 Strong invariance 471.705* 174 .970 .964 .052 .046 .057 2-2 38.66* 12 -.003 .000 +.001 
2-4 Strict invariance 594.054* 189 .959 .955 .058 .053 .063 2-3 90.90* 15 -.011 -.009 +.006 
2-5 Partial strict invariance 535.092* 187 .965 .961 .054 .049 .059 2-3 53.48* 13 -.005 -.003 +.002 
2-6 Variances-covariances invariance 621.341* 193 .957 .953 .059 .054 .064 2-5 91.15* 6 -.008 -.008 +.005 
2-7 Latent means invariance 798.614* 196 .939 .935 .069 .064 .074 2-6 252.80* 3 -.018 -.018 +.010 

B-ESEM: MI 
across samples 

3-1 Configural invariance 257.902* 102 .985 .970 .049 .042 .056 - - - - - - 
3-2 Weak invariance 304.679* 146 .985 .979 .041 .035 .048 3-1 47.21 44 .000 +.009 -.008 
3-3 Strong invariance 315.906* 157 .985 .980 .040 .033 .046 3-2 8.92 11 .000 +.001 -.001 
3-4 Strict invariance 318.640* 172 .986 .983 .037 .030 .043 3-3 12.87 15 +.001 +.003 -.003 
3-5 Variances-covariances invariance 328.295* 182 .986 .984 .036 .029 .042 3-4 8.38 10 .000 +.001 -.001 
3-6 Latent means invariance 339.102* 186 .986 .984 .036 .030 .042 3-5 11.74 4 .000 .000 .000 

ESEM: DIF 
(Age & BMI) 

4-1 Null effects 480.006* 93 .966 .951 .057 .052 .062 - - - - - - 
4-2 Saturated 335.486* 63 .976 .949 .058 .052 .064 4-1 140.38* 30 +.010 -.002 +.001 
4-3 Factors-only 419.773* 87 .971 .955 .055 .050 .060 4-1 67.81* 6 +.005 +.004 -.002 

B-ESEM: DIF 
(Sample, gender, 
Sample x 
Gender) 

5-1 Null effects 503.276* 96 .966 .946 .058 .053 .063 - - - - - - 
5-2 Saturated 208.501* 51 .987 .961 .049 .042 .056 5-1 311.62* 45 +.021 +.015 -.009 
5-3 Factors-only 302.647* 84 .982 .967 .045 .040 .051 5-1 141.53* 12 +.016 +.021 -.013 

ESEM: Hybrid 
DIF (Age, BMI) 

6-1 Null effects 785.127* 253 .951 .948 .057 .053 .062 - - - - - - 
6-2 Saturated 625.424* 193 .960 .944 .059 .054 .065 6-1 149.19* 60 +.009 -.004 +.002 
6-3 Factors-only 735.378* 241 .954 .949 .057 .052 .061 6-1 53.21* 12 -.007 +.001 -.002 
6-4 Factors-only - invariant  743.755* 247 .954 .950 .056 .052 .061 6-3 5.10 6 .000 +.001 -.001 

B-ESEM: Hybrid 
DIF (Age, 
gender, BMI) 

7-1 Null effects 736.492* 276 .962 .958 .051 .047 .056 - - - - - - 
7-2 Saturated 335.752* 186 .988 .980 .036 .029 .042 7-1 444.37* 90 +.026 +.022 -.015 
7-3 Factors-only 466.644* 252 .982 .979 .037 .031 .042 7-1 321.28* 24 +.020 +.021 -.014 
7-4 Factors-only - invariant  479.884* 264 .982 .980 .036 .031 .041 7-3 11.42 12 .000 +.001 -.001 

Notes. CFA= confirmatory factor analyses; B-CFA = bifactor CFA; ESEM = exploratory structural equation modeling; B-ESEM = bifactor exploratory structural equation 
modeling; CU = correlated uniqueness; MF = method factor; MI = measurement invariance; DIF = differential item functioning; χ² = robust maximum likelihood chi-square; 
df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; 90% CI = 90% confidence interval of 
the RMSEA; LB = lower bound; UB = upper bound; ∆Rχ² = robust chi-square difference tests (calculated from loglikelihoods for greater precision); ∆ = change from the 
previous model. * p ≤ .01  
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Table 3 

Standardised Parameters Estimates from the Three-Factor Confirmatory Factor 

Analytic Representation of the Acceptance of Cosmetic Surgery Scale  

Items Intrapersonal (λ) Social (λ) Consider (λ) δ 

ACSS1 .751     .436 

ACSS2 .879     .228 

ACSS4 .769     .409 

ACSS5 .811     .342 

ACSS14 .810     .343 

ACSS9   .799   .362 

ACSS11   .653   .573 

ACSS12   .778   .394 

ACSS13   .826   .317 

ACSS15   .829   .313 

ACSS3     .888 .211 

ACSS6     .893 .202 

ACSS7     .905 .181 

ACSS8     .902 .186 

ACSS10     .650 .577 

ω .902 .885 .930   

Correlations     

Intrapersonal -       

Social .595 -     

Consider .733 .699     
Notes. λ = factor loadings; δ = Uniquenesses; ω = McDonald’s omega. Non-significant loadings and 
correlations are underlined and italicised. 

 
Table 4 

Standardised Parameters Estimates from the Bifactor Confirmatory Factor Analytic 

Representation of the Acceptance of Cosmetic Surgery Scale  

Items 
Intrapersonal (λ) 

S-factor 

Social (λ)  

S-factor 

Consider (λ) S-

factor  
G-factor δ 

ACSS1 .370     .647 .444 

ACSS2 .526     .700 .234 

ACSS4 .427     .644 .403 

ACSS5 .589     .597 .296 

ACSS14 .438     .677 .350 

ACSS9   .538   .596 .356 

ACSS11   .187   .654 .537 

ACSS12   .351   .676 .420 

ACSS13   .806   .507 .094 

ACSS15   .490   .648 .341 

ACSS3     .211 .880 .181 

ACSS6     .378 .806 .207 

ACSS7     .482 .783 .156 

ACSS8     .441 .793 .176 

ACSS10     .329 .565 .573 

ω .762 .763 .724 .956   
Notes. ACSS = Acceptance of Cosmetic Surgery Scale; λ = factor loadings; S -factor = specific factor; G-
factor = global factor; δ = Uniquenesses; ω = McDonald’s omega. 
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Table 5 

Standardised Parameters Estimates from the Three-Factor Exploratory Structural Equation Modeling 

Representation of the Acceptance of Cosmetic Surgery Scale 

Items Intrapersonal (λ) Social (λ) Consider (λ) δ 

ACSS1 .660 -.092 .193 .431 

ACSS2 .897 -.079 .042 .219 

ACSS4 .732 .157 -.071 .391 

ACSS5 .909 -.038 -.091 .315 

ACSS14 .738 .112 .001 .347 

ACSS9 -.102 .801 .111 .332 

ACSS11 .178 .417 .155 .565 

ACSS12 .097 .628 .105 .418 

ACSS13 -.045 .996 -.185 .245 

ACSS15 .018 .776 .060 .317 

ACSS3 .186 .096 .686 .201 

ACSS6 .045 .099 .788 .212 

ACSS7 -.026 .045 .896 .176 

ACSS8 -.066 -.006 .967 .158 

ACSS10 -.022 -.087 .729 .561 

ω .901 .875 .927   

Intrapersonal -       

Social .569 -     

Consider .702 .636     
Notes. ACSS = Acceptance of Cosmetic Surgery Scale; λ = factor loadings; S -factor = specific 
factor; G-factor = global factor; δ = Uniquenesses; ω = McDonald’s omega; Non-significant 
loadings are underlined and italicised. 

 
Table 6 

Standardised Parameters Estimates from the Bifactor Exploratory Structural Equation Modeling 

Representation of the ACSS 

Items 
Intrapersonal (λ)    

S-factor 

Social (λ)  

S-factor 

Consider (λ) 

S-factor  
G-factor δ 

ACSS1 .440 -.069 .156 .588 .432 

ACSS2 .581 -.066 .084 .657 .220 

ACSS4 .447 .058 -.006 .637 .391 

ACSS5 .594 -.033 .023 .579 .310 

ACSS14 .459 .030 .040 .662 .349 

ACSS9 -.036 .534 .111 .608 .332 

ACSS11 -.188 -.082 -.235 .851 .180 

ACSS12 -.052 .251 -.039 .739 .387 

ACSS13 -.046 .718 -.094 .593 .121 

ACSS15 .002 .462 .052 .667 .340 

ACSS3 .132 .014 .377 .800 .200 

ACSS6 .094 .067 .478 .741 .208 

ACSS7 .060 .043 .539 .730 .171 

ACSS8 .021 -.010 .550 .732 .161 

ACSS10 .020 -.075 .401 .521 .561 

ω .789 .723 .809 .959   
Notes. ACSS = Acceptance of Cosmetic Surgery Scale; λ = factor loadings; S -factor = specific 
factor; G-factor = global factor; δ = Uniquenesses; ω = McDonald’s omega; Non-significant loadings 
are underlined and italicized. 
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Table 7 

Results from the Final Bifactor-ESEM-Within-CFA Predictive Model  

 Body appreciation  Symptoms of disordered eating  Self-esteem 

 b (SE) β  b (SE) β  b (SE) β 

G-factor -.096 (.024)** -.119  .184 (.021)** .259  -.103 (.019)** -.166 

Intrapersonal .007 (.026) .009  -.101 (.023)** -.142  .043 (.019)* .069 

Social -.092 (.028)** -.115  .155 (.025)** .217  -.071 (.022)** -.114 

Consider -.171 (.027)** -.213  .087 (.023)** .123  -.133 (.020)** -.214 

Notes. b = unstandardised regression coefficient; SE = standard error of the coefficient; β = sample-specific standardised regression 

coefficient; G-factor = global factor. * p ≤ .05; ** p ≤ .01 

 
Table 8 

Relations between the ACSS Latent Factors and the Predictors from the Bifactor Exploratory Structural Equation Modeling 

      Subsample-specific standardised coefficients 

  b (SE) 
β (First split-half 

sample) 
β (Second split-half sample) 

Age       

G-factor -.053 (.035) -.052 -.052 

Intrapersonal .046 (.040) .046 .046 

Social .009 (.085) .009 .009 

Consider -.204 (.033)** -.188** -.188** 

Gender       

G-factor .356 (.302) .163 .159 

Intrapersonal .212 (.260) .098 .096 

Social -.452 (.396) -.203 -.199 

Consider .819 (.290)** .349** .342** 

Body mass-index       

G-factor -.021 (.067) -.021 -.021 

Intrapersonal -.010 (.072) -.010 -.010 

Social .100 (.032)** .097** .097** 

Consider .048 (.085) .044 .044 
Notes. ACSS = Acceptance of Cosmetic Surgery Scale; b = unstandardised regression coefficient taken from the factors-only models (6-4) invariant across samples; SE = 
standard error of the coefficient; β = sample-specific standardised regression coefficient (although some of the relations are invariant across samples, the standardised 
coefficients may still show some variation as a function of within-samples estimates of variability); G-factor = global factor. Because age and body mass index were 
standardised prior to these analyses and because the ACSS latent factors are estimated based on a model of latent variance-covariance invariance in which all latent factors 
have a SD of 1, all unstandardised coefficients can be directly interpreted is SD units. * p ≤ .05; ** p ≤ .01. 
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Figure 1. Abbreviated factor loading diagrams (error terms have been omitted). (a) Standard 

confirmatory factor analysis (CFA) model; (b) Standard exploratory structural equation modeling 

(ESEM) model; (c) Higher-order CFA model; (d) Higher-order ESEM model; (e) Bifactor-CFA 

model; (f) Bifactor-ESEM model 
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Figure 2. A decision tree for assistance in assessments of factor validity. 
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Sample Invariance: Bifactor-ESEM       p. T25 

Configural Invariance        p. T25 

Weak Invariance         p. T27 

Strong Invariance         p. T28 

Strict Invariance         p. T29 

Latent Variances and Covariances Invariance     p. T30 

Latent Means Invariance        p. T31 

  



Technical Supplements for ESEM and Bifactor ESEM in Body Image Research T2 

 

 

Test of Differential Item Functioning (DIF)      p. T32 

ESEM with Age and Body Mass Index as Predictors     p. T32 

Null Effects Model        p. T32 

Saturated Model         p. T33 

Factors-Only Model        p. T33 

Bifactor-ESEM with Sample, Gender and Sample x Gender as Predictors  p. T34 

Null Effects Model        p. T34 

Saturated Model         p. T35 

Factors-Only Model        p. T35 

 

Hybrid DIF with Age and Body Mass Index: ESEM     p. T36 

Null Effects Model        p. T36 

Saturated Model         p. T38 

Factors-Only Model        p. T39 

Factors-Only Invariant Model       p. T40 

 

Hybrid DIF with Age, Gender and Body Mass Index: Bifactor ESEM  p. T41 

Null Effects Model        p. T41 

Saturated Model         p. T43 

Factors-Only Model        p. T44 

Factors-Only Invariant Model       p. T45 
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MEASUREMENT MODELS 

CFA 

!!! Mplus ignores annotations following !  

!!! Each line of code (command) needs to end with ; 

TITLE:   ACSS_CFA ;! Title of the input 

  DATA:   FILE IS ACSS.dat; ! Name of the file 

 

  VARIABLE:  ! Name of the variables in order of appearance in the file 

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13 

  acss14 acss15 BAS BISQ RSES; 

 

  MISSING ARE ALL (-999); ! To identify the missing data in the file 

 

! Recoded variables need to be added at the end of the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 acss10R; 

 

  ANALYSIS: 

  ESTIMATOR IS MLR; ! To identify the estimator used 

 

  DEFINE: ! To modify variables; here it is to reverse-coded acss10 

IF (acss10 EQ 1) THEN acss10R= 7;   IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3) 

THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R= 3;   

IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

 

  MODEL: 

! To define the 3 factors of the ACSS with the related indicators.  

! The * is required to request the free estimation of the loading of the first indicator.  

! For identification purposes, the factor variance is then fixed to 1 (@1). 

  Intra BY acss1* acss2 acss4 acss5 acss14; 

 

  Soc BY acss9* acss11 acss12 acss13 acss15; 

   

  Cons BY acss3* acss6 acss7 acss8 acss10R; 

 

  Intra@1; 

  Soc@1; 

  Cons@1; 

 

  OUTPUT: ! To request specific output section, we recommend the following 

SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES MODINDICES (6.0) 

TECH1 TECH3 TECH4; 
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Bifactor-CFA 
! We only report sections that differ from previous models. 

MODEL: 

! The ACSS G factor is defined using all indicators 

  FG BY acss1* acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R;   

 

! The ACSS S-factors are defined as in the CFA model 

  Intra BY acss1* acss2 acss4 acss5 acss14; 

  Soc BY acss9* acss11 acss12 acss13 acss15; 

  Cons BY acss3* acss6 acss7 acss8 acss10R; 

 

! All ACSS factors are fixed to 1 for identification purposes 

  FG@1; 

  Intra@1; 

  Soc@1; 

  Cons@1; 

 

! Correlations are fixed to be exactly 0 according to bifactor specifications 

  FG WITH Intra@0 Soc@0 Cons@0; 

  Intra WITH Soc@0 Cons@0; 

  Soc WITH Cons@0; 

 

ESEM with an Oblique GEOMIN (.5) Rotation 

! We only report sections that differ from previous models. 

  ANALYSIS:  

! to request Geomin rotation (oblique by default) 

  ROTATION=GEOMIN (.5);  

 

 

  MODEL: 

! This code is to request 3 ESEM factors (forming a single SET) defined from  

! all indicators (with all loadings and cross-loadings free).  

! ESEM factors are specified using (*1) at the end.  

! Other Sets of factors would simply need to use a different number such as (*2) 

  F1-F3 BY acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 acss10R (*1); 

 

Bifactor-ESEM with an Orthogonal GEOMIN (.5) Rotation  

! We only report sections that differ from previous models. 

  ANALYSIS: 

! To request an orthogonal bifactor Geomin rotation 

  ROTATION=BI-GEOMIN (ORTHOGONAL .5); 

 

  MODEL: 

! Relative to the ESEM model, the only change here is to add the request for a global factor 

! F1-F4 would also work, as the BI-GEOMIN request automatically estimates the first factor as G 

  FG F1-F3 BY acss1 acss2 acss3 acss4 acss5 acss6 

 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 acss10R (*1); 
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ESEM with a Target Rotation  

! We only report sections that differ from previous models. 

  ANALYSIS: 

! To request a target rotation (oblique by default) 

  ROTATION = TARGET; 

  MODEL: 

! With target rotation, factors are defined (and named) one at a time, but factors forming a Set  

! are all defined by the same items.  

! The set is identified as before with (*1) at the end of each factor. 

! Main loadings are simply specified. Cross-loadings are given a target value of 0 using ~ 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1);  
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Troubleshooting 

 

When working with complex analytic models, some users may experience convergence 

difficulties: (a) The model fails to converge (i.e., no fit indices, standard errors, and tests of 

statistical significance are provided); (b) the model converges on an improper solution 

(standardised correlations ≥ 1, negative variance estimates, negative residual estimates, 

standardised loading higher than 1, etc.). Some of these problems can be solved by simply 

allowing the model a higher number of iterations. We then recommend adding the following to 

the ANALYSIS: section:  

ITERATIONS = 10000;  

H1ITERATIONS = 10000; ! this second one is related to the missing data handling procedure.  

 

When this is not enough, it is possible to reduce the convergence criterion, which sometimes 

helps the model converge on a proper solution. The following then needs to be added, in addition 

to the previous addition, to the ANALYSIS: section:  

CONVERGENCE = .0001; 

H1CONVERGENCE = .0001; 

 

When this is not enough, these values can be progressively decreased to .0005, then to .001, then 

to .005, then to .01, and then to .05 (do not skip a step). 

 

Sometimes, rather than – or in addition to – adjusting the convergence criteria, it is possible to 

force the improper parameter estimates to take a proper value. However, sometimes, impossible 

(improper) parameter values only emerge when using one specific type of rotation. This is part of 

the rotational indeterminacy (all models with different rotations are equivalent) rather than a true 

problem with the model. It is possible to help the model converge on a proper solution (i.e., to 

guide the rotation to be result in the best statistically proper solution) using the MODEL 

CONSTRAINT section. However, if the solutions proposed here do not solve the problem, and 

this problem appears with other rotations, then this could be a true problem. Similar procedures 

can also be used in CFA (or in any type of models). In the present illustration, target rotation 

resulted in a standardised factor loading (associated with item ACSS13) higher than one. As one 

cannot label (and constraint) factor loadings in ESEM (as one can in CFA), the only way forward 

is to force the uniqueness of the item to take on a slightly higher value, as shown here:  

 

! The uniqueness of the item is first assigned a unique label (here: res1). 

  acss13 (res1); 

! A MODEL CONSTRAINT section is added at the end of the model.  

! The label is used to constrain the parameter to be higher or lower than a specific value.  

! For the present problem:  

  MODEL CONSTRAINT: 

  res1 > 0.710; 

 

! But had we wanted to handle a negative residual, we could have used:  

  res1 > 0.01; 

 

Similar procedures can be used to restrict correlations estimates to fall between 1.000 and -1.000. 

However, it is important to keep in mind that constraints can only be implemented on 

unstandardised estimates (i.e., covariances), rather than standardised ones (correlations). Thus, 

researchers would need to constrain covariances to take a value that results in a proper 

correlation, knowing that correlation = covariance / (standard deviation variable 1 * standard 

deviation variable y).  
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Bifactor-ESEM with an Orthogonal Target Rotation  

! We only report sections that differ from previous models. 

   ANALYSIS: 

  ESTIMATOR IS MLR; 

! To request a bifactor orthogonal target rotation 

  ROTATION = TARGET (orthogonal); 

 

  MODEL: 

 ! Defined as in ESEM, with the addition of a G-factor including no target (all main loadings) 

 FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

   

  Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 
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CORRELATED UNIQUENESS AND METHOD FACTORS  

ESEM with Correlated Uniquenesses 

! We only report sections that differ from previous models. 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

   

  Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! To add correlated uniqueness 

  acss15 WITH acss10R; 

  acss5 WITH acss10R; 

  acss15 WITH acss5; 

 

ESEM with a Method Factor 

! We only report sections that differ from previous models. 

MODEL: 

! To estimate a method factor (uncorrelated with the other factors) 

  MF BY acss5* acss15 acss10R; 

  MF@1; 

  MF WITH Intra@0 Soc@0 Cons@0; 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

   

  Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 
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Bifactor-ESEM with Correlated Uniquenesses 

! We only report sections that differing from previous models. 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

   

  Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! To add correlated uniqueness 

  acss15 WITH acss10R; 

  acss5 WITH acss10R; 

  acss15 WITH acss5; 

 

Bifactor-ESEM with a Method Factor 

! We only report sections that differ from previous models. 

MODEL: 

! To estimate a method factor (uncorrelated with the other factors) 

  MF BY acss5* acss15 acss10R; 

  MF@1; 

  MF WITH FG@0 Intra@0 Soc@0 Cons@0; 

 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

   

  Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1);  
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ESEM-WITHIN-CFA 

! We only report sections that differ from previous models. 

  ANALYSIS: 

  ESTIMATOR IS MLR; 

! This is no longer an ESEM solution, so there is no need for a rotation 

! The ESEM-Within-CFA model is built from the final ESEM solution, using the unstandardized  

! parameter estimates from this solution as start values. Start values are indicated by an * before  

! the value. Fixed values are indicated by a @ before the value.  

! When SVALUES are requested as part of the OUTPUT: section of the final ESEM solution, the  

! values required for this set up will be provided in the model output section labelled “ 

! MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES” 

! For each factor, one referent indicator is selected. It should ideally be an item with a high  

! main loading and low cross-loadings, but any indicator will do. For this referent indicator, all  

! cross-loadings are fixed to their ESEM values (@).  

! Factor variances are also all fixed to 1.  

 

  MODEL: 

       intra BY acss1*1.43203; 

       intra BY acss2*1.71045; 

       intra BY acss4*1.35799; 

       intra BY acss5*1.66550; 

       intra BY acss14*1.42937; 

       intra BY acss9*-0.17748; 

       intra BY acss11*0.35441; 

       intra BY acss12*0.19195; 

       intra BY acss13@-0.07632; ! Referent indicator for Soc factor 

       intra BY acss15*0.03492; 

       intra BY acss3*0.39507; 

       intra BY acss6*0.10193; 

       intra BY acss7*-0.05908; 

       intra BY acss8@-0.15394; ! Referent indicator for Cons factor 

       intra BY acss10r*-0.04919; 

 

       soc BY acss1*-0.20042; 

       soc BY acss2*-0.15034; 

       soc BY acss4*0.29114; 

       soc BY acss5@-0.07012; ! Referent indicator for Intra factor 

       soc BY acss14*0.21781; 

       soc BY acss9*1.39505; 

       soc BY acss11*0.82871; 

       soc BY acss12*1.24284; 

       soc BY acss13*1.69717; 

       soc BY acss15*1.47664; 

       soc BY acss3*0.20452; 

       soc BY acss6*0.22270; 

       soc BY acss7*0.10472; 

       soc BY acss8@-0.01356; ! Referent indicator for Cons factor 

       soc BY acss10r*-0.19625; 

 

       cons BY acss1*0.41875; 

       cons BY acss2*0.08018; 

       cons BY acss4*-0.13089; 

       cons BY acss5@-0.16687; ! Referent indicator for Intra factor 

       cons BY acss14*0.00215; 
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       cons BY acss9*0.19381; 

       cons BY acss11*0.30757; 

       cons BY acss12*0.20718; 

       cons BY acss13@-0.31551; ! Referent indicator for Soc factor 

       cons BY acss15*0.11337; 

       cons BY acss3*1.45748; 

       cons BY acss6*1.76837; 

       cons BY acss7*2.06492; 

       cons BY acss8*2.25102; 

       cons BY acss10r*1.64723; 

       soc WITH intra*0.56897; 

       cons WITH intra*0.70245; 

       cons WITH soc*0.63633; 

! Item intercepts 

       [ acss1*4.28627 ]; 

       [ acss2*4.34824 ]; 

       [ acss3*3.27686 ]; 

       [ acss4*3.68314 ]; 

       [ acss5*4.69882 ]; 

       [ acss6*3.48392 ]; 

       [ acss7*3.68784 ]; 

       [ acss8*3.52706 ]; 

       [ acss9*2.18824 ]; 

       [ acss11*2.76941 ]; 

       [ acss12*2.80078 ]; 

       [ acss13*2.09647 ]; 

       [ acss14*4.13412 ]; 

       [ acss15*2.51843 ]; 

       [ acss10r*4.15843 ]; 

! Item uniquenesses 

       acss1*2.02788; 

       acss2*0.79462; 

       acss3*0.90680; 

       acss4*1.34856; 

       acss5*1.05895; 

       acss6*1.06513; 

       acss7*0.93612; 

       acss8*0.85496; 

       acss9*1.00669; 

       acss11*2.23441; 

       acss12*1.63698; 

       acss13*0.71009; 

       acss14*1.30248; 

       acss15*1.14723; 

       acss10r*2.86117; 

 

! Variances of ACSS factors are fixed (@) to 1 

! To be able to keep them *1 (rather than @1) when the factors are endogenous, the main  

! loading of the referent indicator should also be fixed (@) 

     intra@1; soc@1; cons@1; 

  OUTPUT:   SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES 

MODINDICES (6.0) TECH1 TECH3 TECH4; 
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BIFACTOR-ESEM-WITHIN-CFA 

! We only report sections that differ from previous models. 

   ANALYSIS: 

  ESTIMATOR IS MLR; 

! This is no longer a bifactor ESEM solution, so there is no need for a rotation 

! This model is set up as the previous one (ESEM-within-CFA). One referent indicator also needs  

! to be selected for the G-factor, and all factor correlations need to be fixed to 0 (@0). 
 MODEL: 
     fg BY acss1*1.27466; 
     fg BY acss2@1.25228; ! Referent indicator for Intra factor 
     fg BY acss4*1.18214; 
     fg BY acss5*1.06137; 
     fg BY acss14*1.28156; 
     fg BY acss9*1.05900; 
     fg BY acss11*1.69114; 
     fg BY acss12*1.46255; 
     fg BY acss13@0.99653; ! Referent indicator for Soc factor 
     fg BY acss15*1.26796; 
     fg BY acss3*1.69946; 
     fg BY acss6*1.66308; 
     fg BY acss7@1.68231; ! Referent indicator for Cons factor 
     fg BY acss8*1.70541; 
     fg BY acss10r*1.17758; 
     
     intra BY acss1*0.95349; 
     intra BY acss2*1.10742; 
     intra BY acss4*0.82938; 
     intra BY acss5*1.08808; 
     intra BY acss14*0.89000; 
     intra BY acss9*-0.06188; 
     intra BY acss11*-0.37323; 
     intra BY acss12*-0.10224; 
     intra BY acss13@-0.07649; ! Referent indicator for Soc factor 
     intra BY acss15*0.00444; 
     intra BY acss3*0.28106; 
     intra BY acss6*0.21085; 
     intra BY acss7@0.13809; ! Referent indicator for Cons factor 
     intra BY acss8@0.04784; ! Referent indicator for G factor 
     intra BY acss10r*0.04550; 
     
     soc BY acss1*-0.14885; 
     soc BY acss2@-0.12559; ! Referent indicator for Intra factor 
     soc BY acss4*0.10857; 
     soc BY acss5*-0.05988; 
     soc BY acss14*0.05727; 
     soc BY acss9*0.93001; 
     soc BY acss11*-0.16328; 
     soc BY acss12*0.49707; 
     soc BY acss13*1.20634; 
     soc BY acss15*0.87826; 
     soc BY acss3*0.03014; 
     soc BY acss6*0.15045; 
     soc BY acss7@0.09863; ! Referent indicator for Cons factor 
     soc BY acss8@-0.02380; ! Referent indicator for G factor 
     soc BY acss10r*-0.16934; 
     cons BY acss1*0.33739; 
     cons BY acss2@0.15985; ! Referent indicator for Intra factor 
     cons BY acss4*-0.01061; 
     cons BY acss5*0.04130; 
     cons BY acss14*0.07818; 
     cons BY acss9*0.19293; 
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     cons BY acss11*-0.46634; 
     cons BY acss12*-0.07797; 
     cons BY acss13@-0.15812; ! Referent indicator for Soc factor 
     cons BY acss15*0.09855; 
     cons BY acss3*0.79999; 
     cons BY acss6*1.07314; 
     cons BY acss7*1.24152; 
     cons BY acss8@1.28091; ! Referent indicator for G factor 
     cons BY acss10r*0.90632; 
 

! Factor correlations fixed to 0.  

     intra WITH fg@0.00000; 

     soc WITH fg@0.00000; 

     soc WITH intra@0.00000; 

     cons WITH fg@0.00000; 

     cons WITH intra@0.00000; 

     cons WITH soc@0.00000; 

 

! Item intercepts 

     [ acss1*4.28627 ]; 

     [ acss2*4.34824 ]; 

     [ acss3*3.27686 ]; 

     [ acss4*3.68314 ]; 

     [ acss5*4.69882 ]; 

     [ acss6*3.48392 ]; 

     [ acss7*3.68784 ]; 

     [ acss8*3.52706 ]; 

     [ acss9*2.18824 ]; 

     [ acss11*2.76941 ]; 

     [ acss12*2.80078 ]; 

     [ acss13*2.09647 ]; 

     [ acss14*4.13412 ]; 

     [ acss15*2.51843 ]; 

     [ acss10r*4.15843 ]; 

 

! Item uniquenesses  

     acss1*2.03326; 

     acss2*0.79811; 

     acss3*0.90115; 

     acss4*1.34904; 

     acss5*1.04143; 

     acss6*1.04792; 

     acss7*0.91084; 

     acss8*0.87058; 

     acss9*1.00851; 

     acss11*0.70970; 

     acss12*1.51372; 

     acss13*0.34209; 

     acss14*1.30832; 

     acss15*1.23027; 

     acss10r*2.86230; 

! Variances of ACSS factors (FG and S-factors) are fixed (@) to 1 

! To be able to keep them *1 (rather than @1) when the factors are endogenous, the main  

! loading of the referent indicator should also be fixed (@) 

     fg@1; intra@1; soc@1; cons@1;  
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PREDICTIVE MODEL WITH BIFACTOR-ESEM-WITHIN-CFA 

Predictors-to-Outcomes Paths Free for the G-Factor Only  

  TITLE:   ACSS_EwC_Bi-factor_ESEM_predictions_G&S-factors@0 

  DATA:   FILE IS ACSS.dat; 

  VARIABLE:   

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13 

  acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

  USEVARIABLES ARE acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 BAS BISQ RSES acss10R; 

 

   ANALYSIS: 

  ESTIMATOR IS MLR; 

! The convergence criterion was reduced (.005) to help the model converge 

! With missing data, the same should be done to the H1Convergence. 

! Decreasing the convergence should be tried after having first increased the Iterations and  

! H1Iterations to 10000; 

  convergence = .005; 

 

MODEL: 

     fg BY acss1*1.27466; 

     fg BY acss2@1.25228; ! Referent indicator for Intra factor 

     fg BY acss4*1.18214; 

     fg BY acss5*1.06137; 

     fg BY acss14*1.28156; 

     fg BY acss9*1.05900; 

     fg BY acss11*1.69114; 

     fg BY acss12*1.46255; 

     fg BY acss13@0.99653; ! Referent indicator for Soc factor 

     fg BY acss15*1.26796; 

     fg BY acss3*1.69946; 

     fg BY acss6*1.66308; 

     fg BY acss7@1.68231; ! Referent indicator for Cons factor 

     fg BY acss8*1.70541; 

     fg BY acss10r*1.17758; 

     

     intra BY acss1*0.95349; 

     intra BY acss2*1.10742; 

     intra BY acss4*0.82938; 

     intra BY acss5*1.08808; 

     intra BY acss14*0.89000; 

     intra BY acss9*-0.06188; 

     intra BY acss11*-0.37323; 

     intra BY acss12*-0.10224; 

     intra BY acss13@-0.07649; ! Referent indicator for Soc factor 

     intra BY acss15*0.00444; 

     intra BY acss3*0.28106; 

     intra BY acss6*0.21085; 

     intra BY acss7@0.13809; ! Referent indicator for Cons factor 

     intra BY acss8@0.04784; ! Referent indicator for FG factor 

     intra BY acss10r*0.04550; 
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     soc BY acss1*-0.14885; 

     soc BY acss2@-0.12559; ! Referent indicator for Intra factor 

     soc BY acss4*0.10857; 

     soc BY acss5*-0.05988; 

     soc BY acss14*0.05727; 

     soc BY acss9*0.93001; 

     soc BY acss11*-0.16328; 

     soc BY acss12*0.49707; 

     soc BY acss13*1.20634; 

     soc BY acss15*0.87826; 

     soc BY acss3*0.03014; 

     soc BY acss6*0.15045; 

     soc BY acss7@0.09863; ! Referent indicator for Cons factor 

     soc BY acss8@-0.02380; ! Referent indicator for FG factor 

     soc BY acss10r*-0.16934; 

     cons BY acss1*0.33739; 

     cons BY acss2@0.15985; ! Referent indicator for Intra factor 

     cons BY acss4*-0.01061; 

     cons BY acss5*0.04130; 

     cons BY acss14*0.07818; 

     cons BY acss9*0.19293; 

     cons BY acss11*-0.46634; 

     cons BY acss12*-0.07797; 

     cons BY acss13@-0.15812; ! Referent indicator for Soc factor 

     cons BY acss15*0.09855; 

     cons BY acss3*0.79999; 

     cons BY acss6*1.07314; 

     cons BY acss7*1.24152; 

     cons BY acss8@1.28091; ! Referent indicator for FG factor 

     cons BY acss10r*0.90632; 

 

     intra WITH fg@0.00000; 

     soc WITH fg@0.00000; 

     soc WITH intra@0.00000; 

     cons WITH fg@0.00000; 

     cons WITH intra@0.00000; 

     cons WITH soc@0.00000; 

 

     [ acss1*4.28627 ]; 

     [ acss2*4.34824 ]; 

     [ acss3*3.27686 ]; 

     [ acss4*3.68314 ]; 

     [ acss5*4.69882 ]; 

     [ acss6*3.48392 ]; 

     [ acss7*3.68784 ]; 

     [ acss8*3.52706 ]; 

     [ acss9*2.18824 ]; 

     [ acss11*2.76941 ]; 

     [ acss12*2.80078 ]; 

     [ acss13*2.09647 ]; 

     [ acss14*4.13412 ]; 

     [ acss15*2.51843 ]; 

     [ acss10r*4.15843 ]; 
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     acss1*2.03326; 

     acss2*0.79811; 

     acss3*0.90115; 

     acss4*1.34904; 

     acss5*1.04143; 

     acss6*1.04792; 

     acss7*0.91084; 

     acss8*0.87058; 

     acss9*1.00851; 

     acss11*0.70970; 

     acss12*1.51372; 

     acss13*0.34209; 

     acss14*1.30832; 

     acss15*1.23027; 

     acss10r*2.86230; 

 

! Variances of ACSS factors (FG and S-factors) are fixed (@) to 1 

! If the G- and S- factors had been outcomes, then the variances should have been *1  

! and the main loading of the referent indicator fixed (@). 

     fg@1; intra@1; soc@1; cons@1; 

! Predictions are indicated with ON. The outcome is specified before ON, the predictor after.  

! Paths not estimated are fixed to 0 (@0).  

     BAS BISQ RSES ON fg; 

     BAS BISQ RSES ON intra@0; 

     BAS BISQ RSES ON soc@0; 

     BAS BISQ RSES ON cons@0; 

 

 

Predictors-to-Outcomes Paths Free for the G- and S- Factors 

! We only report sections that differ from previous models. 

MODEL: 

! Only the predictive section needs to be updated 

     BAS BISQ RSES ON fg; 

     BAS BISQ RSES ON intra; 

     BAS BISQ RSES ON soc; 

     BAS BISQ RSES ON cons; 
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GENDER INVARIANCE: ESEM  

 

Configural Invariance 

  TITLE:   M0-ESEM_Configural 

  DATA:   FILE IS ACSS.dat; 

  VARIABLE:   

    NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13  

  acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

! Recoded variables need to be added at the end of the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 acss10R; 

! The GROUPING command is used to identify the variable used to define the gender groups 

! Each value of the grouping variable is given an arbitrary label (here men and women). 

  GROUPING IS gender (1= men 2= women); 

ANALYSIS: 

  ESTIMATOR IS MLR; 

  ROTATION = TARGET; 

 

DEFINE: 

IF (acss10 EQ 1) THEN acss10R= 7;   IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3) 

THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R= 3;   

IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

 

! The MODEL section is used to define the parameters that apply to all groups.  

! With ESEM, the scale of the factors is automatically set by allowing all of the loadings and  

! cross-loadings to be freely identified and the factor variances to be fixed to 1.  

! For consistency, we strongly recommend setting the scale of the mean structure in the same  

! manner, by freely estimating all intercepts and fixing the factors means to be 0, leading to  

! a complete standardized factors approach. 

  MODEL: 

! Factor loadings 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

! Factor variances 

  Intra@1; Soc@1; Cons@1; 

! Factor means 

  [Intra@0]; [Soc@0]; [Cons@0]; 

! Item intercepts 

  [acss1 -acss10R]; 

! Item uniquenesses 

  acss1-acss10R; 
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! The MODEL WOMEN section is then used to define how the parameters differ, or not,  

! across gender. One specific section fewer than the total number of groups is usually needed, 

! and this section cannot be the one referring to the first group.  

! In the configural model, all parameters are free (the previous syntax is repeated here) 

MODEL WOMEN: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R]; 

  acss1-acss10R; 

 

  OUTPUT: SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES 

MODINDICES (6.0) TECH1 TECH3 TECH4; 
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Weak Invariance 

! We only report sections that differ from previous models. 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1 -acss10R]; 

  acss1-acss10R; 

 

  MODEL women: 

! By default, factor loadings are set up to be equal across groups in Mplus.  

! So, for tests of weak invariance, the women-specific mention of ACSS factor loadings should  

! simply be taken out. By constraining the loadings to equality across gender groups, the variance 

! now needs to be freed in all but the first group. 

  Intra*;   Soc*;   Cons*; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R]; 

  acss1-acss10R; 
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Strong Invariance 

! We only report sections that differ from previous models. 

    MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

! Intercepts can be constrained to equality across groups by using identical labels (in  

! parentheses) in all gender groups. We recommend using alphanumeric labels where the letter  

! is linked to the type of parameter being estimated (e.g., i for intercept). Labels need to be  

! uniquely associated with a single parameter. 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R; 

 

  MODEL women: 

! Once intercepts are invariant, factor means need to be freed in in all but the first group. 

  Intra*;   Soc*;   Cons*; 

  [Intra*];  [Soc*];  [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R; 
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Strict Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

! To set the ACSS item uniquenesses (e.g., u for uniquenesses) to be equal across gender groups 

  acss1-acss10R (u1-u15); 

 

  MODEL women: 

  Intra*;   Soc*;   Cons*; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 
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Partial Strict Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

! To request the free estimation of the non-invariant uniqueness, remove the label.  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

! To request the free estimation of the non-invariant uniqueness, remove the label. 

acss15*;  

  acss10R (u15); 

 

  MODEL women: 

  Intra*;   Soc*;   Cons*; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

! To request the free estimation of the non-invariant uniqueness, remove the label.  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

! To request the free estimation of the non-invariant uniqueness, remove the label. 

acss15*;  

  acss10R (u15); 
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Latent Variances and Covariances Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! ACSS factor variances need to be fixed back to 1 in all groups.  

! In doing so, ACSS factor covariances need to be specified and set to equality across groups. 

  Intra@1;   Soc@1;   Cons@1; 

  Intra WITH Soc (cov1); 

  Intra WITH Cons (cov2); 

  Soc WITH Cons (cov3); 

 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

acss15*;  

  acss10R (u15); 

 

  MODEL women: 

! ACSS factor variances need to be fixed back to 1 in all groups.  

! In doing so, ACSS factor covariances need to be specified and set to equality across groups. 

  Intra@1;   Soc@1;   Cons@1; 

  Intra WITH Soc (cov1); 

  Intra WITH Cons (cov2); 

  Soc WITH Cons (cov3); 

 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

acss15*;  

  acss10R (u15); 
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Latent Means Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  Intra WITH Soc (cov1); 

  Intra WITH Cons (cov2); 

  Soc WITH Cons (cov3); 

! ACSS factor means need to be fixed back to 0 in all groups. 

  [Intra@0];   [Soc@0];   [Cons@0]; 

 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

acss15*;  

  acss10R (u15); 

 

  MODEL women: 

  Intra@1;   Soc@1;   Cons@1; 

  Intra WITH Soc (cov1); 

  Intra WITH Cons (cov2); 

  Soc WITH Cons (cov3); 

! ACSS factor means need to be fixed back to 0 in all groups. 

  [Intra@0];   [Soc@0];   [Cons@0]; 

 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5);   acss6 (u6);   acss7 (u7);  

  acss8 (u8);    acss9 (u9);  

acss11*;  

 acss12 (u11);    acss13 (u12);   acss14 (u13);    

acss15*;  

  acss10R (u15); 
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SAMPLE INVARIANCE: BIFACTOR-ESEM  

 

Configural Invariance 

  TITLE:   M0-BESEM_Configural 

  DATA:  FILE IS ACSS.dat; 

  VARIABLE:  

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13 

  acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

! Recoded variables need to be added at the end of the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4  

acss5 acss6 acss7 acss8 acss9  acss11 acss12 acss13  

acss14 acss15 acss10R; 

! The GROUPING command is used to identify the variable used to define the samples 

! Each value of the grouping variable is given an arbitrary label (here sample1 and sample2). 

  GROUPING IS sample (1= sample1 2= sample2); 

ANALYSIS: 

  ESTIMATOR IS MLR; 

  ROTATION = TARGET (orthogonal); 

 

DEFINE: 

IF (acss10 EQ 1) THEN acss10R= 7;   IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3) 

THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R= 3;   

IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

 

! The MODEL section is used to define the parameters that apply to all groups.  

! With Bifactor-ESEM, the scale of the factors is automatically set by allowing all loadings and  

! cross-loadings to be freely identified and the factor variances to be fixed to 1.  

! For consistency, we strongly recommend setting the scale of the mean structure in the same  

! manner, by freely estimating all intercepts and fixing the factors means to be 0, leading to  

! a complete standardized factors approach. 

! Factor correlations are automatically rotated to 0 with an orthogonal rotation. 

  MODEL: 

! Factor loadings 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! Factor variances 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 
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! Factor means 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

! Item intercepts 

  [acss1-acss10R]; 

! Item uniquenesses 

  acss1-acss10R; 

 

! The MODEL SAMPLE2 section is then used to define how the parameters differ, or not,  

! across samples. One specific section fewer than the total number of groups is usually needed. 

! In the configural model, all parameters are free (the previous syntax is repeated here) 

  MODEL SAMPLE2: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R]; 

  acss1-acss10R; 
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Weak Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R]; 

  acss1-acss10R; 

 

  MODEL sample2: 

! By default, factor loadings are set up to be equal across groups in Mplus.  

! So, for tests of weak invariance, the sample-specific mention of ACSS factor loadings need to be  

! simply be taken out. By constraining the loadings to equality across subsamples, the variance 

! now need to be freed in all but the first group. 

  FG*;   Intra*;   Soc*;   Cons*; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R]; 

  acss1-acss10R; 
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Strong Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

! Intercepts can be constrained to equality across groups by using identical labels (in  

! parentheses) in all gender groups. We recommend using alphanumeric labels where the letter  

! is linked to the type of parameter being estimated (e.g., i for intercept). Labels need to be  

! uniquely associated with a single parameter. 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R; 

 

  MODEL sample2: 

  FG*;   Intra*;   Soc*;   Cons*; 

! Once intercepts are invariant, factor means need to be freed in in all but the first group. 

  [FG*];   [Intra*];   [Soc*];   [Cons*]; 

 [acss1-acss10R] (i1-i15); 

   acss1-acss10R;  
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Strict Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

! Set the item uniquenesses (e.g., u for uniquenesses) to be equal across samples  

  acss1-acss10R (u1-u15); 

 

  MODEL sample2: 

  FG*;   Intra*;   Soc*;   Cons*; 

  [FG*];   [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 
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Latent Variances and Covariances Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! ACSS factor variances need to be fixed back to 1 in all groups.  

! In doing so, ACSS factor covariances need to be specified and set to equality across groups. 

! (even if they are rotated to be 0) 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  FG WITH Intra (cov1); 

  FG WITH Soc (cov2); 

  FG WITH Cons (cov3); 

  Intra WITH Soc (cov4); 

  Intra WITH Cons (cov5); 

  Soc WITH Cons (cov6); 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 

 

  MODEL sample2: 

! ACSS factor variances need to be fixed back to 1 in all groups.  

! In doing so, ACSS factor covariances need to be specified and set to equality across groups  

! (even if they are rotated to be 0) 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  FG WITH Intra (cov1); 

  FG WITH Soc (cov2); 

  FG WITH Cons (cov3); 

  Intra WITH Soc (cov4); 

  Intra WITH Cons (cov5); 

  Soc WITH Cons (cov6); 

  [FG*];   [Intra*];  [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 
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Latent Means Invariance 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  FG WITH Intra (cov1); 

  FG WITH Soc (cov2); 

  FG WITH Cons (cov3); 

  Intra WITH Soc (cov4); 

  Intra WITH Cons (cov5); 

  Soc WITH Cons (cov6); 

! ACSS factor means need to be fixed back to 0 in all groups. 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 

 

  MODEL sample2: 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  FG WITH Intra (cov1); 

  FG WITH Soc (cov2); 

  FG WITH Cons (cov3); 

  Intra WITH Soc (cov4); 

  Intra WITH Cons (cov5); 

  Soc WITH Cons (cov6); 

! ACSS factor means need to be fixed back to 0 in all groups. 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1-acss10R (u1-u15); 
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TEST OF DIFFERENTIAL ITEM FUNCTIONING (DIF) 

 

ESEM with Age and Body Mass Index as Predictors: Null Effects Model 

 

  TITLE:   M1-ESEM-DIF_null-effects 

  DATA:   FILE IS ACSS.dat; 

 

  VARIABLE:   

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13  

  acss14 acss15 BAS BISQ RSES; 

 

  MISSING ARE ALL (-999); 

 

! The predictors need to be added to the USEVARIABLES list 

! Recoded variables need to be added at the end of the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss11 acss12 acss13 

  acss14 acss15 age BMI acss10R; 

 

  ANALYSIS: 

  ESTIMATOR IS MLR; 

  ROTATION = TARGET; 

 

  DEFINE: 

IF (acss10 EQ 1) THEN acss10R= 7;  IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3) 

THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R= 3;   

IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

! To standardize the predictors 

  Standardize age BMI; 

 

  MODEL: 

! The ACSS factors are defined as in ESEM  

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! The ACSS factors and items are regressed on the predictors 

! All predictions are fixed to 0 (@0). 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 

   

  OUTPUT:   SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES 

MODINDICES (6.0) TECH1 TECH3 TECH4;  
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ESEM with Age and Body Mass Index as Predictors: Saturated Model 

 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the factors remain fixed to 0 (@0).  

! The effects of the predictors on the items are freely estimated. 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age BMI; 

  acss10R ON age BMI; 

 

 

ESEM with Age and Body Mass Index as Predictors: Factors-Only Model 

 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the items remain fixed to 0 (@0).  

! The effects of the predictors on the factors are freely estimated. 

  Intra-Cons ON age BMI; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 
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Bifactor-ESEM with Sample, Gender and Sample x Gender as Predictors:  

Null Effects Model 

  TITLE:   M1-BESEM-MIMIC_null-effects 

  DATA:   FILE IS ACSS.dat; 

  VARIABLE:   

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 

  acss5 acss6 acss7 acss8 acss9 acss10 acss11 acss12 acss13 

  acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

! The predictors need to be added to the USEVARIABLES list 

! Recoded variables need to be added at the end of the USEVARIABLES list 

 USEVARIABLES ARE acss1 acss2 acss3 acss4 acss5 acss6 acss7 

 acss8 acss9 acss11 acss12 acss13 acss14 acss15 acss10R  

sampleR genderR SamXGen; 

  ANALYSIS: 

  ESTIMATOR IS MLR; 

  ROTATION = TARGET (orthogonal); 

 

  DEFINE: 

IF (acss10 EQ 1) THEN acss10R= 7;  IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3) 

THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R= 3;   

IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

! To recode sample as a dummy variable. Sample1 was recoded 0 and sample2 was recoded 1 

 IF (sample EQ 1) THEN sampleR = 0; 

 IF (sample EQ 2) THEN sampleR = 1; 

! To recode gender as a dummy variable. Men was recoded 0 and women was recoded 1 

 IF (gender EQ 1) THEN genderR = 0; 

 IF (gender EQ 2) THEN genderR = 1; 

! To compute the interaction between sample and gender 

  SamXGen = sampleR*genderR; 

 

  MODEL: 

! The ACSS factors are defined as in Bifactor-ESEM  

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! The ACSS factors and items are regressed on the predictors 

! All predictions are fixed to 0 (@0). 

  FG-Cons ON sampleR@0 genderR@0 SamXGen@0; 

  acss1-acss10R ON sampleR@0 genderR@0 SamXGen@0; 
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Bifactor-ESEM with Sample, Gender and Sample x Gender as Predictors:  

Saturated Model 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the factors remain fixed to 0 (@0).  

! The effects of the predictors on the items are freely estimated. 

  FG-Cons ON sampleR@0 genderR@0 SamXGen@0; 

  acss1-acss10R ON sampleR genderR SamXGen; 

 

Bifactor-ESEM with Sample, Gender and Sample x Gender as Predictors:  

Factors-Only Model 

 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the items remain fixed to 0 (@0).  

! The effects of the predictors on the factors are freely estimated. 

  FG-Cons ON sampleR genderR SamXGen; 

  acss1-acss10R ON sampleR@0 genderR@0 SamXGen@0; 
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HYBRID DIF WITH AGE AND BODY MASS INDEX – ESEM 

 

Null Effects Model 

! The starting model is the most invariant ESEM Solution (Latent Variances and Covariances 

Invariance, see p. T22) 

  TITLE: M41-ESEM-Hybrid-DIF_null-effects 

  DATA: FILE IS ACSS.dat; 

  VARIABLE:   

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 acss5 acss6 acss7 acss8 acss9 

acss10 acss11 acss12 acss13 acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

! The predictors need to be added to the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4 acss5 acss6 acss7 acss8 acss9  acss11 acss12 

acss13   acss14 acss15 age BMI acss10R; 

  GROUPING IS gender (1= men 2= women); 

  ANALYSIS: 

  ESTIMATOR IS MLR; 

  ROTATION = TARGET; 

 

  DEFINE: 

 IF (acss10 EQ 1) THEN acss10R= 7;   IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3)  

 THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R=  

3;   IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

! To standardize the predictors  

  Standardize age BMI; 

 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

[acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13); 

[acss15] (i14);  [acss10R] (i15);   

acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

 

! The factors and items are regressed on the predictors, with all predictions fixed to 0 (@0) in  

! both groups. 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 
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  MODEL women: 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

 

! The factors and items are regressed on the predictors, with all predictions fixed to 0 (@0) in  

! both groups. 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 

 

  OUTPUT:   SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES 

MODINDICES (6.0) TECH1 TECH3 TECH4;  
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Saturated Model 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS factors remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS items are freely estimated in both groups. 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age BMI; 

  acss10R ON age BMI; 

 

  MODEL women: 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS factors remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS items are freely estimated in both groups. 

  Intra-Cons ON age@0 BMI@0; 

  acss1-acss15 ON age BMI; 

  acss10R ON age BMI; 
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Factors-Only Model 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are freely estimated in both groups. 

  Intra-Cons ON age BMI; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 

 

  MODEL women: 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are freely estimated in both groups. 

  Intra-Cons ON age BMI; 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 
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Factors-Only Invariant Model 

! We only report sections that differ from previous models 

  MODEL: 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are free but equal across groups. 

  Intra-Cons ON age BMI (FO1-FO6); 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 

 

  MODEL women: 

  Intra@1;   Soc@1;   Cons@1; 

  [Intra*];   [Soc*];   [Cons*]; 

  [acss1-acss10R] (i1-i15); 

  acss1 (u1);   acss2 (u2);   acss3 (u3);   acss4 (u4);   acss5 (u5); acss6 (u6); acss7 (u7); acss8 (u8);  

  acss9 (u9); acss11 ;   acss12 (u11);   acss13 (u12);   acss14 (u13);  acss15 ; acss10R (u15); 

  Intra WITH Soc (cov1);   Intra WITH Cons (cov2);   Soc WITH Cons (cov3); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are free but equal across groups. 

  Intra-Cons ON age BMI (FO1-FO6); 

  acss1-acss15 ON age@0 BMI@0; 

  acss10R ON age@0 BMI@0; 
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HYBRID DIF WITH AGE, GENDER AND BODY MASS INDEX – BIFACTOR-ESEM 

 

Null Effects Model 

! The starting model is the most invariant bifactor-ESEM solution (Latent Means Invariance, see  

! p T30) 

  TITLE:   M51-BESEM-Hybrid-MIMIC_null-effects 

  DATA: FILE IS ACSS.dat; 

  VARIABLE:   

  NAMES ARE sample age gender BMI acss1 acss2 acss3 acss4 acss5 acss6 acss7 acss8 acss9 

acss10 acss11 acss12 acss13 acss14 acss15 BAS BISQ RSES; 

  MISSING ARE ALL (-999); 

! The predictors need to be added to the USEVARIABLES list 

  USEVARIABLES ARE acss1 acss2 acss3 acss4   acss5 acss6 acss7 acss8 acss9  acss11 acss12 

acss13   acss14 acss15 Age BMI acss10R genderR; 

  DEFINE: 

 IF (acss10 EQ 1) THEN acss10R= 7;   IF (acss10 EQ 2) THEN acss10R= 6;   IF (acss10 EQ 3)  

 THEN acss10R= 5;   IF (acss10 EQ 4) THEN acss10R= 4;   IF (acss10 EQ 5) THEN acss10R=  

3;   IF (acss10 EQ 6) THEN acss10R= 2;   IF (acss10 EQ 7) THEN acss10R= 1; 

! To recode gender as a dummy variable. Men was recoded 0 and women was recoded 1 

IF (gender EQ 1) THEN genderR = 0; 

IF (gender EQ 2) THEN genderR = 1; 

! To standardize the predictors  

  Standardize age BMI; 

 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1;  

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

[acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13); 

[acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 
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! The ACSS factors and items are regressed on the predictors. 

! All predictions are fixed to 0 (@0) in both groups. 

  FG-Cons ON age@0 genderR@0 BMI@0; 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0; 

 

  MODEL sample2: 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

[acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13); 

[acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

! The ACSS factors and items are regressed on the predictors. 

! All predictions are fixed to 0 (@0) in both groups. 

  FG-Cons ON age@0 genderR@0 BMI@0; 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0; 

 

  OUTPUT:   SAMPSTAT STANDARDIZED CINTERVAL RESIDUAL SVALUES 

MODINDICES (6.0) TECH1 TECH3 TECH4; 
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Saturated Model 

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1;  

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

  [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS factors remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS items are freely estimated in both groups. 

  FG-Cons ON age@0 genderR@0 BMI@0; 

  acss1-acss15 ON age genderR BMI; 

  acss10R ON age genderR BMI; 

 

  MODEL sample2: 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);  

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

 [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS factors remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS items are freely estimated in both groups. 

  FG-Cons ON age@0 genderR@0 BMI@0; 

  acss1-acss15 ON age genderR BMI; 

  acss10R ON age genderR BMI; 
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Factors-Only Model  

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1;  

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

  [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are freely estimated in both groups. 

  FG-Cons ON age genderR BMI; 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0; 

 

  MODEL sample2: 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);  

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

 [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are freely estimated in both groups. 

  FG-Cons ON age genderR BMI; 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0;  
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Factors-Only Invariant Model  

! We only report sections that differ from previous models 

  MODEL: 

  FG BY acss1 acss2 acss4 acss5 acss14 

  acss9 acss11 acss12 acss13 acss15 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  Intra BY acss1 acss2 acss4 acss5 acss14 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

  Soc BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9 acss11 acss12 acss13 acss15 

  acss3~0 acss6~0 acss7~0 acss8~0 acss10R~0 (*t1); 

 

    Cons BY acss1~0 acss2~0 acss4~0 acss5~0 acss14~0 

  acss9~0 acss11~0 acss12~0 acss13~0 acss15~0 

  acss3 acss6 acss7 acss8 acss10R (*t1); 

 

  FG@1;   Intra@1;   Soc@1;   Cons@1;  

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);   

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

  [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are free and equal across groups. 

  FG-Cons ON age genderR BMI (FO1-FO12); 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0; 

 

  MODEL sample2: 

  FG@1;   Intra@1;   Soc@1;   Cons@1; 

  [FG@0];   [Intra@0];   [Soc@0];   [Cons@0]; 

  [acss1] (i1);   [acss2] (i2);   [acss3] (i3);   [acss4] (i4);   [acss5] (i5);   [acss6] (i6);   [acss7] (i7);  

  [acss8] (i8);   [acss9] (i9);  [acss11] (i10);   [acss12] (i11);   [acss13] (i12);  [acss14] (i13);  

 [acss15] (i14);  [acss10R] (i15);   

  acss1-acss15(u1-u14); 

  acss10R (u15); 

  FG WITH Intra (cov1);   FG WITH Soc (cov2);   FG WITH Cons (cov3);   Intra WITH Soc 

(cov4);   Intra WITH Cons (cov5);   Soc WITH Cons (cov6); 

 

! The ACSS factors and items are regressed on the predictors.  

! The effects of the predictors on the ACSS items remain fixed to 0 (@0) in both groups.  

! The effects of the predictors on the ACSS factors are free and equal across groups. 

  FG-Cons ON age genderR BMI (FO1-FO12); 

  acss1-acss15 ON age@0 genderR@0 BMI@0; 

  acss10R ON age@0 genderR@0 BMI@0; 

 


