

The Bifactor ESEM framework

A way to see the forest and the trees in psychometric measurement

Alexandre J.S. Morin

Factor Analysis

- Focuses on the <u>covariance</u> matrix:What is shared among the indicators.
 - A <u>reflective model</u>: The indicators are seen as providing a reflection of the latent construct.
 - The indicators are assumed to have 2 causes: the latent construct, and the uniqueness (which includes random error, and all that is specific to the item).

Principal Component Analysis

- Aims to reproduces the complete <u>variance-</u> <u>covariance</u> matrix, thus what is shared among the indicators and what is unique to them.
- **Formative model**: Indicators "form" the latent variable.
- Useful as a way to obtain a "summary" index of otherwise unrelated indicators (e.g., life events: divorce, marriage, death of a loved one, imprisonment).
- Assume that you are interested in all that is in the indicators.

Lauri Tarkkonen's Blueberry Pie

- You mix the dough, let it rest.
- Go pick the blueberries in your garden.
- Come back, roll the dough, make a base.
- Principal component analysis:
 - Drop the content of your picking bucket in directly into the pie plate.
 - This is a good method when you were very careful in the picking process and are growing organic blueberries.

Factor analysis :

 When you were not as careful, you may prefer to start by extracting leaves, frogs, lizards and spiders from your bucket, and then washing the blueberries. This is like controlling for "measurement errors".

ta *ex	emple S	PSS.sav [Dat	taSet1	- IBM SP	SS Statistics Da	ta	Editor		10.00	-	·	a ta				-	-			\Leftrightarrow	
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u>	ata	Transform	m <u>A</u> nalyze	1	Direct <u>M</u> arke	ting	<u>G</u> rap	hs	<u>U</u> tilities	Add-	<u>o</u> ns	<u>W</u> inc	low	<u>H</u> elp					
6				S	∼ 📱		॑		ų	h	*,				5		(Ø	•	ABG	
																				Visit	 le: 10 of 1
Í		ID	, 	sex	a1		a2		a3		a4		a5		a	6	a7		a8		var
	1	21201	106	1	. 2		. 3	3		3		3		1		2		1		2	
:	2	21201	130	1	2	(-		2		2		4				- 1			~
:	3	41011	117	1	2	1	Cave Da	ata A:	5												
	4	51021	113	1	2	1	Look <u>i</u> n:		Desktop)							-	1	J 📰 🕇		
	5	31041	106	1	2		Balo														
	6	11708	802	2	2		GMM	spor	t												
	7	11708	830	1	2		JLC														
1	8	11708	832	1	2		officia	al do	CS												
	9	21102	214	2	2		Serie	is Inle S	SPSS es	av.											
1	0	21201	125	1	2		CACIT	ipic (51 00.50												
1	1	31321	102	1	2	4															
1	2	31322	206	2	2	4			Keepin	ig 10 c	of 10 varia	bles.								Variable	s
1	3	31432	205	2	2	4	File <u>n</u> am	B:	exemp	le SPS	SS.sav									Save	
1	4	31711	114	1	2	4	Save as t	ype:	SPSS	Statist	tics (*.sav)								Deet	
1	5	51012	229	2	2	4	Encoding		SPSS	Statist	tics (*.sav)						-	i _	Paste	
1	6	51032	234	2	2	4	Encoding		SPSS	Statist	tics Com	resse	d (*.zsa	av)						Cance	:1
1	/	51052	231	2	2	-			SPSS	Statist	tics Local	Encod	ing (*.s	sav)						<u>H</u> elp	
	0	51152	125	2	2	+			SPSS SPSS/	7.0 (^. PC+ ('	sav) * svs)										
	0	5117	120	1	2	H			Portet	ie (*.p	01)	-									
2	.0	51173	202	2	2	H		(Tab de	elimite	d (*.dat)		>								2
2	2	11203	316	1	2	H		~	Comm	na deli	mited (*.o	SV)	Repos	sitory					r		
2	3	11405	511	1	2	ł		_				_				_			_		
-		1			-										-						
Data	View \	/ariable Vie	w																		
Save	As													IBM S	PSS S	tatistics	Processo	nr is re	vhe	Unic	NO:ehc

<mark>ile E</mark> dit ⊻iew <u>D</u> ata <u>T</u> rans	form <u>A</u> nalyze	Dir	ect <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> n	s <u>W</u> ind	dow <u>H</u> elp				
New		۲		R H	*			sta 🎹			36	
<u>O</u> pen		ľ.									finible: 40 of 4	0 Veriable
Open Data <u>b</u> ase		•	0	0		1		0	-		ISIDIE. TO OF I	o variable:
I Read Text Data			q2 2	d3	q4	2	q5 1	dр	q/	d8	var	Var
Read Cognos Data		•	3	3		3	1	2	1	2)	
🕂 Read Triple-S Data			3	3		3	1	2	1	2		
<u>C</u> lose	Ctrl+F4		3	3		3	1	2	. 1	2		
🖬 <u>S</u> ave	Ctrl+S		3	3		3	1	2	1	3		
S <u>a</u> ve As			3	3		3	1	1	1	3		
🖶 Save All Data			3	3		3	1	1	1	3	1	
Export		۶.	3	3		3	1	1	1	3		
🝺 Mar <u>k</u> File Read Only			3	3		3	1	1	1	3		
+ Collect Variable Information			3	3		3	1	1	1	3		
Kename Dataset			3	3		3	1	1	1	3		
Display Data File Information		•	3	3		3	1	1	1	3	(
+ Manage Datasets			3	3		3	1	1	1	3		
Cache Data			3	3		3	1	1	1	3		
Ston Processor	Ctrl+Period		3	3		3	1	1	1	3		
Set Viewer Output Ontions (Suntar	Carrienou		3	3		3	1	1	1	3		
Set viewer Output Options (Syntax)		3	3		3	1	1	1	3		
Switch Server			3	3		3	1	1	1	3		
Repository		P	3	3		3	1	. 1	. 1	3		$\hat{\mathbf{A}}$
Q Print Preview			3	3		3	1	1	1	3	2	<u> </u>
🖹 Print	Ctrl+P		3	3		3	1	1	1	2		
Welcome Dialog			3	3		3	1	1	1	2		
Recently Used Data		۲.					anadan a					1
Recently Used Files		۴										
Exit												
Save As		_				_	IBM S	SPSS Statistics	Processor is r	eady U	nicode:ON	

ta *exe	emple Si	PSS.sav [[DataSet1	.] - IBM SPS	SS Statistics Da	ta Editor							-					
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform	m <u>A</u> nalyze	Direct <u>M</u> arke	ting <u>G</u> ra	aphs	<u>U</u> tilities	Add- <u>o</u> r	ns <u>W</u> ir	ndow	<u>H</u> elp					
					∽⊒ 📱		ч	h	*5					 1 ଲ	Ø		ABG	
																	Visib	le: 10 of 10
		ID		sex	q1	q2	q3		q4		q5	q	6	q7		q8		var
1		212	0106	1	2	:	3	3		3	1		2		1		2	
2	!	212	0130	1	2	(2		2	- 1				- 1		0	~
3		410	1117	1	2	Save Da	ata As											
4		510	2113	1	2	Look in:	📃 Deskt	ор						~	🕋 🕻	J 📰 -		
5		310	4106	1	2	Dela												
6	i	117	0802	2	2		sport											
7	'	117	0830	1	2	JLC												
8	1	117	0832	1	2	📗 🌲 offici	al docs											
9	1	211	0214	2	2	Serie	S											
1	0	212	0125	1	2	BINT	_invar.csv											
1	1	313	2102	1	2													
1:	2	313	2206	2	2		Keep	oing 10 c	of 10 varia	bles.							Variable	3
1:	3	314	3205	2	2	File nam	e: exen	nple SPS	3S.csv							ר 🥅	0	
14	4	317	1114	1	2	0.000											Save	
1	5	510	1229	2	2	Save as j	ype. Com	ıma deli	mited (*.c	SV)							Paste	
10	6	510	3234	2	2	Encoding	r. 📃 📃								-		Cance	
1	7	510	5231	2	2			tite varia	able nami	es to spr	eadshee	t					Help	
1	В	511	5226	2	2			ve valu	e labels v	vhere de	fined inst	tead of d	ata valu	es			Terb	
19	9	511	7125	1	2		s 🗖 s	av <u>e</u> valu	e labels ii	nto a .sa	s file							
2	0	511	7131	1	2		🔲 E	<u>n</u> crypt fil	e with pas	ssword								4
2	1	511	7202	2	2				_			_						
2	2	112	0316	1	2				Store <u>F</u>	Eile To R	epository	l						
2	3	114	0511	1	2			-	_	-	_		-		-	_	-	
		4																
Data	View V	ariable V	ïew															
Save /	19										IBM	SPSS St	atistics	Processo	nr is re	adv	Unico	de:ON

Title:

Title of the model to be estimated;

! Annotations following "!" are discarded by the program

! The TITLE function is not mandatory.

! All commands end with ";"

! All section titles end with ":""

Data:

File is esemdata.csv;

! The FILE function of the DATA section is used to identify your ! data set. If the data set is in the same folder, then this is fine.

! If the data set is in another folder, then the full link is indicated.

File is D:\DOCUMENTS\LATENT VARIABLE MODELING\esemdata.csv;

19

VARIABLE:

Names are ID sex q1 q2 q3 q4 q5 q6 q7 q8;

! The NAMES function lists, in order, all variables in the data set.

Usevariables are q1 q2 q3 q4 q5 q6 q7 q8;

! The USEVARIABLES function lists those used in the analysis.

Missing are all (-999);

! The MISSING function identifies the missing data code.

Idvariable = ID;

! The IDVARIABLE identifies the unique identifier.

Auxiliary = sex;

Auxiliary = sex (m);

! Sometimes, one wants to save the results from an analysis to an
! external data file (e.g., scores on the factors). This external data
! file will include all variables included in the analyses + those
! listed as auxiliary. The (m) indicators allows auxiliary variables
! to be taken into account in the missing data process.

MODEL:

!!! This is where everything happens !
OUTPUT:
SAMPSTAT STANDARDIZED MODINDICES CINTERVAL
RESIDUAL SVALUES TECH1 TECH3 TECH4 ;

SAMPSTAT: sample descriptive.

STANDARDIZED: Standardized parameter estimates.

CINTERVAL: Confidence intervals for parameter estimates.

RESIDUAL: Residuals for parameter estimates.

MODINDICES: Modification indices.

SVALUES: Starts Values.

TECHI: Parameter specifications and starts values (not for EFA).

TECH3: Correlations and covariances for parameter estimates.

TECH4: Means, Correlations and covariances for the latent variables.

23

MODEL:

ON: Defines a regression e.g., Y ON X;

WITH: Defines a correlation e.g., XWITHY;

BY: Defines a factor loading e.g., FI BY XI X2 X3;

[]: Variable names within brackets define intercepts and means e.g., [X1]; or [F1]; Variable names: By themselves, variable names define variances, uniquenesses and disturbances e.g., X1; or F1;

: Is used to request the free estimation of a parameter that would otherwise be constrained e.g., FI BY XI X2 X3; or to provide a start value for a parameter e.g., FI BY XI*.900 X2*.850 X3*800;

(2): Is used to constrain a parameter to a specific value e.g., FI BY $\times 1$ (2) $\times 2 \times 3$; (): alphanumeric codes in parentheses following a parameter can be used to constrain parameters to equality, e.g. FI BY $\times 1^*$ (11) $\times 2$ (12);

*** WARNING

Data set contains cases with missing on x-variables.

These cases were not included in the analysis.

Number of cases with missing on x-variables: 61
*** WARNING

Data set contains cases with missing on all variables except x-variables. These cases were not included in the analysis.

Number of cases with missing on all variables except x-variables: 30

By explicitly requesting the free Estimation of the variance of the exogenous variables in MODEL: FIML will be activated. X1 X2 X3;

25

THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 13 Loglikelihood H0 Value -7221.664 H0 Scaling Correction Factor 1.6859 for MLR HI Value -7221.604 HI Scaling Correction Factor 1.6256 for MLR Information Criteria Akaike (AIC) 14469.328 14537.107 Bayesian (BIC) Sample-Size Adjusted BIC 14495.811 $(n^* = (n + 2) / 24)$

Chi-Square Test of Model Fi	t
Value	97.470*
Degrees of Freedom	19
P-Value	0.0000
Scaling Correction F for MLR	actor 1.4070
* The chi-square value for	MLM, MLMV, MLR, ULSMV, WLSM and WLSMV
cannot be used for chi-squa	ire difference testing in the regular way. MLM, MLR
and VVLSM chi-square differ	ence testing is described on the Mplus website.
MLMV, VVLSMV, and ULSMV	difference testing is done using the DIFFTEST
Option. BMSEA (Boot Moon Square	
RMSEA (ROOL Mean Square	error Or Approximation)
Estimate	0.055
90 Percent C.I.	0.045 0.066
Probability RMSEA <	= .05 0.203
CFI/TLI	
CFI	0.947
TLI	0.922
SRMR (Standardized Root I	Mean Square Residual)
Value	0.040

MODEL RESU	.TS		
	Estimate S.E.	Two-Taile Est./S.E. P-Value	d Unstandardized
QI Q2	1.000 0.000 999 1.175 0.061 19	9.000 999.000 .371 0.000	loading
POSF ON			Unstandardized
ZSELFEST ZDEPRESS ON	0.225 0.027	8.272 0.000	regression (b)
ZSELFEST	-0.346 0.037	-9.418 0.000	
ZSELFEST WIT	-0.246 0.032	-7.688 0.000	Covariance
Intercepts			- Means,
Variances			Variances
Residual Variar	0.936 0.050	<u>10,751</u> 0,000	
QI	0. <u>8</u> 83 0.049	17.982	Residuals (Disturbances, uniquenesses)

Two-Tailed Standardized POSF BY Q1S.E.EstimateS.E.Est./S.E.P-ValueStandardized loadingQ10.5830.02821.1010.0000.000Q20.7270.02331.8350.000Standardized regression (β)POSF ON ZSELFEST0.2250.0270.772regression (β)ZDEPRESS ON ZSELFEST-0.3460.034-10.3050.000Correlation (r)	STANDARDIZ STDYX Standa	ED MODEL RESULTS rdization
Q1 0.583 0.028 21.101 0.000 Q2 0.727 0.023 31.835 0.000 Standardized POSF ON ZSELFEST 0.225 0.027 0.772 oracle of the second s	POSE BY -	Estimate S.E. Est./S.E. P-Value Standardized
Q2 0.727 0.023 31.835 0.000 Standardized POSF ON ZSELFEST 0.225 0.027 0.772 regression (β) ZDEPRESS ON ZSELFEST -0.346 0.034 -10.305 0.000 ZSELFEST WITH Correlation (r)	QI	0.583 0.028 21.101 0.000
ZSELFEST 0.225 0.027 8.472 regression (β) ZDEPRESS ON ZSELFEST -0.346 0.034 -10.305 0.000 ZSELFEST WITH Correlation (r)	Q2 POSF ON	0.727 0.023 31.835 0.000 Standardized
ZSELFEST -0.346 0.034 -10.305 0.000 Correlation (r)	ZSELFEST ZDEPRESS ON	$0.225 0.027 0.472 \text{second} \text{regression} \ (\beta)$
		-0.346 0.034 -10.305 0.000
ZLONELY -0.246 0.028 -8.875 0.000	ZLONELY	-0.246 0.028 -8.875 0.000
Means InterceptsNA Variances	Means Intercepts —— Variances	NA
Residual VariancesStandardizedPOSF0.9360.01372.8680.000QI0.8820.02239.5640.000Residuals	Residual Variance POSF Q1	0.936 0.013 72.868 0.000 Standardized 0.882 0.022 39.564 0.000 Residuals

Observed Variable	Estimate	S.E.	Est./S.E.	% Explained variance
ZGPA ZDEPRESS	0.064 0.118	0.013 0.022	4.948 5.297	Communality (h ²)
QI	0.340	0.032	10.550	
Q2	0.529	0.033	15.917	0.000
Q3	0.430	0.035	12.212	0.000
Q4	0.55 I	0.035	15.578	0.000
Q5	0.753	0.071	10.544	0.000

Standardized or Unstandardized?

Unstandardized:

- Means and Intercepts
- Variances

Both:

• Regressions (on)

Standardized:

- Loadings (by)
- Residuals
- Correlations (with)
- Residual variances

31

CONFIDENCE INTERVALS OF MODEL RESULTS

Lower .5% Lo	ower 2.5%	Lower 5	% Estima	ate Uppe	er 5% Upp	er 2.5%	Upper .5%
ZGPA ON							
ZSELFEST	0.155	0.172	0.180	0.225	0.270	0.278	0.295
ZDEPRESS	-0.141	-0.122	-0.112	-0.060	-0.009	0.001	0.021
ZDEPRESS O	N						
ZSELFEST	-0.441	-0.418	-0.407	-0.346	-0.286	-0.274	-0.252
ZLONELY	-0.087	-0.068	-0.059	-0.009	0.041	0.050	0.069
C 3							

[...]

CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS STDYX Standardization

Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5% ZGPA ON

ZSELFEST	0.157	0.173	0.181	0.225	0.269	0.277	0.293
ZDEPRESS	-0.142	-0.122	-0.112	-0.060	-0.008	0.001	0.021

• Parsimony

- Exploratory
- Dust bowl empiricism
- Goodness-of-fit
- Relations among latent variables corrected for measurement errors
- Connection to the SEM framework
- Changes the meaning of the constructs
- Parsimony

EFA Versus CFA

- There is nothing inherently "confirmatory" or "exploratory" about EFA or CFA.
- The method can be "exploratory" (based on the estimation of all relations between indicators and constructs) or confirmatory (based on the estimation of a subset of relations).
- However, both approaches can still be used to address "confirmatory" or "exploratory" research objectives.
 - One can do EFA with clear a priori expectations
 - One can capitalize on chance in CFA (modification indices, post hoc changes, etc.).
- The only true difference is that CFA relies on the independent cluster assumption, whereas EFA incorporates cross-loadings.
- Target rotation makes ESEM fully "confirmatory"

- Exploratory
- Dust bowl empiricism
- Goodness-of-fit
- Relations among latent variables corrected for measurement errors
- Connection to the SEM framework
- Changes the meaning of the constructs
- Parsimony

EFA

ANALYSIS: TYPE = EFA I 4; ESTIMATOR = MLR; ROTATION = Geomin (.5); PARALLEL = 1000;

ESEM ANALYSIS:

TYPE = general; ESTIMATOR = MLR; ROTATION = Geomin (.5); MODEL:

F1-F2 BY q1 q2 q3 q4 q5 q6 q7 q8 (*1);

In the model section, identify the desired number of factors (FI-F2, or FI-F3), with the names being somewhat arbitrary.

All factors forming a single "set" of ESEM factors (with cross loadings being freely estimated within one set, and not across sets) have the same label in parenthesis at the end (*1).

Rotations

Geomin (epsilon): A newly developed form of rotation that performs relatively well and is the default in Mplus. The default epsilon values varies across models and we have found that this does not perform so well. We recommend a value of .5 to maximally reduce factor correlations.

Crawford-Ferguson (CF) family:

Minimizes variable complexity (smaller cross-loadings, greater factor correlations) CF-Quartimax (= to direct quartimin) CF-Varimax

Minimizes factor complexity (smaller factor correlations, greater cross-loadings) CF-Equamax CF-Parsimax CF-Facparsim

Oblimin, Promax, Varimax: As in SPSS. Seldom used. Geomin, all of the CF, and Oblimin are oblique by default, but can be specified as orthogonal. ROTATION = CF-QUARTIMAX (Oblique); ROTATION = CF-QUARTIMAX (Orthogonal);

45

Target Rotation

Target rotation, and bifactor-target rotation, provides a way to use a priori (confirmatory) specifications for factor rotations, with all cross-loadings freely estimated, but targeted to be as close to a pre-specified value (typically 0) as possible.

Analysis: ESTIMATOR = ML; ROTATION = TARGET; Model: FI BY XI X2 X3YI~0Y2~0Y3~0 ZI~0Z2~0Z3~0(*1); F2 BY YI Y2Y3 XI~0X2~0X3~0ZI~0Z2~0Z3~0(*1); F3 BY ZI Z2 Z3 XI~0X2~0X3~0YI~0Y2~0Y3~0(*1);

- Exploratory
- Dust bowl empiricism
- Goodness-of-fit
- Relations among latent variables corrected for measurement errors
- Connection to the SEM framework
- Changes the meaning of the constructs
- Parsimony

How to assess the meaning of a construct ?

Reliability or Validity

- Factor loadings and uniquenesses are used to separate sources of variance that are unique to the items (uniquenesses, which include random measurement error), from those that are shared with other items (factor loadings, reflecting true score variance).
- But this is all related to reliability.
- Aren't we supposed to assess the meaning of a construct from analyses of validity?
- What is validity ?

- related, or unrelated constructs.
- SO: The meaning of a construct lies in how it relates to other constructs, not in how it relates to its indicators.

- Simulation studies shows that ESEM/EFA best recovers true population correlations and regressions (i.e., relations among constructs) when even negligible cross-loadings (.100) exist in the population model yet remains unbiased when ICM assumptions hold (when there are no cross loadings).
- This means that ESEM solutions should be favored whenever factor correlations differ across models, as long as the fit remains similar.

- Dust bowl empiricism
- Goodness-of-fit
- Relations among latent variables corrected for measurement errors
- Connection to the SEM framework
- Changes the meaning of the constructs
- Parsimony

Parcimony?

Yes

- 1. When both models provide equivalent results, parsimony should be favored
- 2. Goodness of fit assessment should not be the sole source of information in the selection of the best model
- 3. Goodness-of-fit indices corrected for parsimony (TLI, RMSEA) should be given more weight.

Construct-Relevant Psychometric Multidimensionality

Psychometric Multidimensionality

When the indicators tap into more than one source of true score variance.

1. Construct-Irrelevant Psychometric Multidimensionality:

- Involves the assessment of sources of multidimensionality that have no substantive interest.
- Involves the assessment of sources of multidimensionality that need to be controlled to avoid letting them bias parameter estimates.
- <u>Methodological artefacts</u>:Wording effects, rater effects, etc.

2. Construct-Relevant Psychometric Multidimensionality:

- Involves the assessment of sources of multidimensionality that have a substantive interest.
- Involves the assessment of sources of multidimensionality that need to be controlled to avoid letting them bias parameter estimates.
- Involves the presence of valid associations between the indicator and more than one construct.

59

Construct-Irrelevant Psychometric Multidimensionality:

When indicators share something that is not related to the construct of interest.

- I. Negatively-worded items
- 2. Type of informant: Self-report, parental report, peer reports, supervisor reports.
- 3. Items with parallel wording

Solution 1: Correlated Uniquenesses

FI BY XI* X2 X3;

XI WITH X2;

FI@I;

Schweizer (2012) describes correlated uniquenesses, especially *post hoc* ones, as a disaster for applied research as they change the meaning of the factors.

Correlated uniquenesses simply "float around", providing an implicit control for multidimensionality while bringing nothing new to the model.

They simply take something out.

- Method factors provide an explicit control for multidimensionality by bringing something new to the model
- It makes no sense to allow the method factors to correlate with the trait factors.
- Be careful not to "double dip": Do not re-use referent indicators.
- Not always realistic to use method factors (e.g., to control for parallel wording among 10 pairs of items).

MODEL:	MODEL:
FI BY XI* X2 X3 X4;	FI BY XI@I X2 X3 X4;
F2 BY Y I * Y2 Y3 Y4;	F2 BY Y I @ I Y2 Y3 Y4;
FI@I;	FI*;
F2@I;	F2*;
FI WITH F2* ;	FI WITH F2* ;
MF BY XI* X2 YI Y2;	MF BY XI* X2@I YI Y2;
MF@1;	MF*;
MFWITH FI@0;	MFWITH FI@0;
MF WITH F2@0;	MF WITH F2@0;

Psychometric Multidimensionality

When the indicators tap into more than one source of true score variance.

1. Construct-Irrelevant Psychometric Multidimensionality:

- Involves the assessment of sources of multidimensionality that have no substantive interest.
- Involves the assessment of sources of multidimensionality that need to be controlled to avoid letting them bias parameter estimates.
- <u>Methodological artefacts</u>:Wording effects, rater effects, etc.

2. Construct-Relevant Psychometric Multidimensionality:

- Involves the assessment of sources of multidimensionality that have a substantive interest.
- Involves the assessment of sources of multidimensionality that need to be controlled to avoid letting them bias parameter estimates.
- Involves the presence of valid associations between the indicator and more than one construct.

Construct-Relevant Psychometric Multidimensionality:

When indicators share something that is substantively relevant.

- I. Conceptually-related constructs: Exploratory Structural Equation Modeling (ESEM)
- 2. Hierarchically-ordered constructs: Higher-Order Factor Modeling, Bifactor Modeling.
- 3. Both: Higher-order-ESEM, Bifactor- ESEM

Construct Relevant Psychometric Multidimensionality

The expectation that each item will correspond to a single source of true score variance that is an implicit part of CFA models is unrealistic, and has never been part of psychometric test theory.

Conceptually-Related Constructs

- Insomnia: Depression, anxiety, Drug Abuse, Burnout, etc.
- "I am Good Looking":
 - Physical Self-Concept
 - Peer-Self-Concept, beauty is partly in the eye of the beholder.

Construct Relevant Psychometric Multidimensionality

Hierarchically-Ordered Constructs

- "I am Good Looking":
 - Physical Self-Concept
 - Peer-Self-Concept
 - Global Self-Concept

Proportionality Constraint

The ratio of global (A*B) to specific (A*C) variance will be the same for all items associated with the same first order factor: AB/AC = B/C

Lets say that A (loading of item 1 on Factor 1) is 2, B is also 2, and C is 3. 2 *2 / 2 * 3 = 4 / 6 = .6667 (67%)Now lets say that A is 3 for item 2, and 1.5 for item 3. 3*2 / 3*3 = 6 / 9 = .6667 (67%)1.5*2 / 1.5 *3 = 3 / 4.5 = .6667 (67%)

Application of the framework:

I. CFA versus ESEM:

- I. Goodness of fit.
- 2. Main loadings: Well-defined factors ?
- 3. Cross-loadings: Small enough? Larger ones suggestive of the presence of an underlying global factor ?
- 4. Factor correlations: Substantially reduced with ESEM?

2. CFA versus Bifactor-CFA:

- I. Goodness of fit.
- 2. Well-defined G-factor? S-factors?
- 3. Bifactor-ESEM:
 - I. Goodness of fit.
 - 2. Main loadings: Well-defined G-factor ? S-factor?
 - 3. Cross-loadings: Redued when compared to ESEM?
- 4. All S-factors do not have to be well-defined.

91

Psychological Health

Morin, A.J.S., Boudrias, J.-S., Marsh, H.W., Madore, I., & Desrumaux, P. (2016). Further reflections on disentangling shape and level effects in person-centered analyses: An illustration aimed at exploring the dimensionality of psychological health. *Structural Equation Modeling*, 23, 438-454.

	Harmony (λ)	Serenity (λ)	Involvement (λ)Irritability (λ)	Anx./Dep. (λ)	Distance (λ)	G-Factor (λ)
D1	.118**	060*	.067**	.585**	114**	.042	598**
D8	416**	.222**	.262**	.354**	.059	.047	506**
D12	328**	.179**	.127**	.410**	.066	025	543**
D5	.099**	019	.131**	.493**	046	029	694**
D22	131**	.089**	038	.309**	.304**	.110*	613**
D15	.166**	121**	033	.412**	.075*	.032	722**
D2	138**	.115**	.144**	.141**	.109**	.082**	680**
D14	.226**	123**	.135**	.011	.256**	003	810**
D13	.138**	086**	.028	046	.324**	177**	689**
D20	.022	056**	.126**	.032	.178**	019	858**
D16	.081**	022	.119**	018	.174**	.095**	879 **
D4	.131**	065**	.017	.089**	.058	023	783**
D21	.202**	211**	.132**	.097**	.239**	.125**	706**
D10	.039	.085**	.169**	081**	.075	.140**	890**
D23	.089**	088**	027	.247**	.382**	.145**	669**
D11	222**	.130**	.219**	029	.292**	.032	761**
D19	.055**	.205**	241**	.063**	.054*	.383**	744**
D9	.051*	.104**	006	032	.011	.359**	792**
D7	.004	.168**	.092**	.084**	.004	.248**	803**
D18	011	.180**	076**	.008	.152**	.179**	738**
D17	.072**	.128**	266**	.066*	.301**	.045	745**
D6	.085**	.121**	039	.110**	.062**	.308**	748**
D3	.121**	.145**	137**	.017	109**	.241**	736**

	Harmony (λ)	Serenity (λ)	Involvement (λ)) Irritability (λ)	Anx./Dep. (λ)	Distance (λ)	G-Factor (λ)
W11	.495**	.142**	.159**	181**	.025	.024	.371**
W18	.665**	.075**	138**	218**	.055*	.060*	.388**
W9	.338**	.170**	.090**	.033	.142**	020	.628**
W10	.313**	.286**	.107**	.005	.176**	.121**	.587**
W5	.442**	.041	.066**	.083**	.072*	027	.607**
W12	.273**	.246**	.404**	051	099*	.076	.293**
W21	.326**	.141**	.084**	.134**	024	.016	.358**
W23	.021	.464**	.007	.089**	038	.074**	.605**
W24	027	.394**	.196**	.041	.16**	.347**	.629**
W22	.043*	.483**	.028	.102**	.020	.230**	.685**
W25	.017	.430**	.105**	.129**	.145**	.251**	.743**
W17	.082**	.431**	.189**	059*	.072*	.173**	.518**
W4	.089**	.369**	.107**	.091**	.078**	.148**	.672**
W15	.185**	.670**	064**	.059*	201**	207**	.443**
W16	.076**	.486**	016	241**	.076*	.059	.346**
W7	.154**	.596**	.030	.031	318**	134**	.357**
W19	.093**	.542**	155**	018	012	115**	.318**
W3	.049*	011	.690**	.128**	043	.144**	.402**
W14	.079**	.084**	.499**	.105**	.229**	315**	.592**
W20	.009	.131**	.381**	.121**	.264**	409**	.638**
W6	.202**	.033	.611**	010	043	.047	.456**
W2	.036	.079**	.495**	.128**	.054*	.086**	.552**

Self-Determination Theory

Howard, J., Gagné, M., Morin, A.J.S., Wang, Z.N., & Forest, J. (2018). Using bifactor exploratory structural equation modeling to test for a continuum structure of motivation. *Journal of Management*, 44 (7), 2638-2664.

A Continuum of Relative Autonomy ?

- <u>CFA correlations</u>: Inconclusive.
- Rasch analyses based on <u>higher-order</u> logic: No continuum (Chemolli, & Gagné, 2014), but still based on CFA-like correlations.
- <u>ESEM</u> factor correlations: Satisfactory support for the continuum (Guay, Morin et al., 2015; Litalien, Guay & Morin, 2015).

Items	G-Factor	S-Factor 1	S-Factor 2	S-Factor 3	S-Factor 4	S-Factor 5	S-Factor 6
1. Intrinsic	-						
Item 1	0.73	0.41	-0.01	-0.05	-0.07	-0.05	-0.04
Item 2	0.71	0.54	0.02	-0.01	-0.02	-0.03	-0.05
Item 3	0.75	0.48	0.04	-0.09	-0.03	-0.17	-0.05
2. Identified							
Item 1	0.56	0.04	0.27	0.31	-0.02	0.02	-0.10
Item 2	0.79	0.04	0.26	-0.10	-0.04	< 0.01	0.05
Item 3	0.73	0.01	0.34	0.01	-0.04	-0.01	0.05
3. Introjected							
Item 1	0.33	-0.03	0.03	0.38	0.28	0.10	0.03
Item 2	0.61	-0.02	0.08	0.33	0.06	0.04	-0.05
Item 3	0.28	-0.05	0.06	0.55	0.18	0.12	0.09
Item 4	0.26	-0.05	-0.02	0.55	0.05	0.03	< 0.01
4. Ext-social							
Item 1	0.21	-0.03	-0.09	0.08	0.61	0.22	0.09
Item 2	0.18	-0.05	-0.01	0.13	0.59	0.17	0.09
Item 3	0.02	-0.03	0.06	0.21	0.59	0.25	0.07
5. Ext-material							
Item 1	0.25	-0.13	-0.32	-0.07	0.06	0.78	0.11
Item 2	0.18	-0.03	0.09	0.13	0.33	0.47	0.11
Item 3	-0.07	0.07	0.35	0.22	0.32	0.59	< 0.01
6. Amotivation							
Item 1	-0.35	-0.05	-0.04	0.01	0.07	0.08	0.62
Item 2	-0.30	< 0.01	0.03	< 0.01	0.04	0.09	0.59
Item 3	-0.31	-0.06	0.02	0.06	0.12	0.06	0.62

Relations With Covariates: Standardized Coefficients										
	Quantity On	ıly			Qua	antity and Quality	r			
Covariates	G-Factor	\mathbb{R}^2	Amotivation	External Material	External Social	Introjection	Identified	Intrinsic	G-Factor	\mathbb{R}^2
Affective Commitment	.61 (< .01)	.38	11 (.01)	12 (< .01)	.10 (.02)	14 (.03)	.20 (.04)	.17 (.02)	.55 (< .01)	.42
Continuance Commitment	02 (.64)	.00	.15 (.01)	02 (.63)	.23 (< .01)	.09 (.33)	.24 (.08)	09 (.37)	02 (.80)	.14
Autonomy	.39 (< .01)	.15	21 (< .01)	01 (.93)	06 (.21)	14 (.02)	15 (.04)	.16 (< .01)	.38 (< .01)	.26
Competence	.09 (.03)	.01	07 (.21)	10 (.06)	09 (.14)	.06 (.43)	11 (.18)	.02 (.76)	.12 (.01)	.05
Relatedness	.39 (< .01)	.15	19 (< .01)	.01 (.83)	04 (.51)	14 (.02)	15 (.04)	.17 (< .01)	.37 (< .01)	.25

Note: Probability (p) values are shown in parentheses. G-factor = global factor representing the global quantity of self-determined motivation.

103

Litalien, D., Morin, A.J.S., Gagné, M., Vallerand, R.J., Losier, G., Ryan, R.M. (2017). Evidence of a continuum structure of academic selfdetermination: A two-study test using a Bifactor-ESEM representation of academic motivation. *Contemporary Educational Psychology, 51*, 67-82

				DITACIOI-ESE	V1		
			λ	(SE)			
G-Factor	S-Factor 1	S-Factor 2	S-Factor 3	S-Factor 4	S-Factor 5	S-Factor 6	S-Factor 7
600(041)**	427(076)**	115(021)**	004(043)	026(058)	055(044)	076(041)	122(027)**
713(038)**	418(062)**	146(033)**	127(054)*	-015(044)	- 027(033)	- 160(038)**	122(.037)* 066(.028)*
725(022)**	235(075)**	057(036)	-051(077)	055(.057)	- 118(040)**	109(.038)	- 046(043)
713(036)**	267(082)**	.037(.030)	- 119(054)*	055(.057)		- 076(038)*	040(.043)
.715(.050)	.207(.002)	.004(.037)	119(.054)	.074(.007)	099(.041)	070(.058)	004(.050)
.549(.046)**	.138(.061)*	.256(.054)**	.189(.061)**	.049(.068)	023(.046)	099(.043)*	.126(.034)**
.480(.043)**	.118(.038)**	.681(.042)**	.013(.043)	.013(.038)	.033(.028)	067(.029)*	.107(.026)**
.471(.047)**	014(.038)	.700(.045)**	.009(.053)	083(.036)*	037(.029)	084(.028)**	.174(.028)**
.644(.037)**	.043(.051)	.448(.049)**	049(.050)	089(.048)	025(.033)	117(.039)**	.134(.031)**
.620(.044)**	.078(.055)	.118(.046)*	.261(.117)*	082(.060)	.048(.038)	158(.038)**	032(.033)
.739(.037)**	024(.051)	032(.041)	.237(.116)*	143(.052)**	.168(.041)**	013(.031)	.004(.031)
.739(.035)**	016(.049)	.118(.039)**	.150(.116)	114(.043)**	.032(.042)	104(.031)**	.116(.031)**
.828(.020)**	.065(.047)	023(.033)	025(.124)	110(.054)*	005(.039)	062(.029)*	.004(.032)
.462(.049)**	.134(.052)*	055(.031)	.016(.077)	.516(.077)**	.008(.036)	.147(.043)**	224(.041)*
.376(.049)**	.000(.049)	064(.034)	.001(.055)	.457(.109)**	.035(.044)	.361(.063)**	- .180(.046)*
.492(.047)**	082(.064)	020(.040)	048(.077)	.305(.118)*	011(.048)	.262(.058)**	120(.053)*
.493(.054)**	082(.059)	032(.042)	- .161(.068)*	.397(.087)**	001(.047)	.186(.048)**	- .150(.041)*
.382(.047)**	.061(.057)	.037(.039)	.151(.053)**	052(.048)	.647(.059)**	.134(.037)**	.002(.037)
.512(.057)**	125(.075)	.028(.050)	.277(.067)**	.114(.070)	.332(.067)**	.154(.043)**	.060(.039)
.580(.040)**	139(.047)**	011(.035)	006(.085)	.052(.050)	.517(.049)**	.090(.042)*	.102(.036)**
.599(.046)**	023(.061)	072(.033)	195(.089)	023(.060)	.663(.087)**	.076(.033)*	.013(.031)
.131(.057)*	.140(.062)*	.021(.042)	.043(.076)	.163(.051)**	.092(.042)*	.709(.039)**	.026(.038)
.327(.058)**	.030(.051)	124(.030)**	001(.045)	.170(.064)**	.072(.033)*	.742(.040)**	080(.031)*
.377(.055)**	176(.056)**	090(.033)**	034(.056)	.125(.056)*	.086(.038)*	.633(.045)**	.013(.035)
.331(.061)**	211(.052)**	068(.042)	095(.060)	.106(.056)	.087(.042)*	.703(.053)**	091(.032)
400(.048)**	106(.048)*	.028(.031)	058(.062)	159(.050)**	.031(.031)	025(.037)	.659(.039)**
310(.051)**	.067(.049)	.128(.032)**	.072(.078)	.019(.058)	.073(.034)*	004(.038)	.666(.040)**
381(.049)**	027(.032)	.179(.030)**	016(.038)	150(.044)**	.014(.024)	077(.028)**	.732(.035)**
403(.046)**	010(.035)	.068(.025)**	.015(.042)	120(.042)**	.005(.027)	028(.030)	.775(.034)**

	G-factor only		ctor only Global and specific factors								
	β (SE)	R ²	G-factor β (SE)	Int. Know. β (SE)	Int. Stim. β (SE)	Int. Acc. β (SE)	ldentified β (SE)	Introjected β (SE)	External β (SE)	Amotivation β (SE)	\mathbb{R}^2
Study 1: Outcomes											
Vitality	0.225 (0.048)	0.051	0.213 (0.053)**	0.119 (0.074)	0.095 (0.058)	-0.055 (0.068)	0.084 (0.065)	-0.099 (0.057)	-0.166 (0.053)	-0.132 (0.049)	0.133
Ill-being	-0.124 (0.047)	0.015	-0.108 (0.051)°	-0.137 (0.058) [*]	0.035 (0.051)	0.041 (0.073)	-0.131 (0.068)	0.112 (0.048)**	0.150 (0.043)	0.353 (0.044)	0.210
Study 2: Outcomes											
Academic Ach.	0.097 (0.051)	0.009	0.081 (0.051)	-0.017 (0.057)	0.112 (0.054)°	0.112 (0.059)	-0.064 (0.049)	-0.145 (0.048)**	-0.126 (0.048)**	-0.169 (0.049)**	0.102
Dropout Intent.	-0.312	0.097	-0.190	-0.071 (0.070)	-0.064 (0.070)	-0.116 (0.101)	-0.167	0.058 (0.042)	-0.067 (0.037)	0.634 (0.045)	0.497
Satisfaction	0.412 (0.046)**	0.170	0.285	0.147 (0.072)	0.075 (0.066)	0.178 (0.099)	0.178 (0.051)**	-0.048 (0.044)	0.002 (0.046)	-0.441 (0.039)	0.369
Study 2: Predictors											
SN Competence	0.082 (0.055)	-	0.070 (0.070)	-0.012 (0.100)	-0.069	0.278	-0.111 (0.070)	-0.178 (0.059)**	0.224	-0.034 (0.063)	-
SN Autonomy	0.379	-	0.388	0.000 (0.110)	-0.012 (0.118)	-0.231	0.160	-0.073	-0.234	-0.484	-
SN Relatedness	0.024 (0.053)	-	0.020 (0.055)	-0.016 (0.078)	-0.049 (0.084)	0.087 (0.076)	0.082 (0.066)	0.069 (0.063)	0.069 (0.066)	0.067 (0.050)	-
R ² in Mot. from the Predictors	0.199	-	0.197	0.001	0.012	0.061	0.034	0.040	0.043	0.215	-

Setting the Scale

Referent Indicator: FI BY X1@I X2 X3; FI*; [X1@0 X2 X3]; [FI*]; Standardized Factors (the only one available in ESEM): FI BY X1* X2 X3; FI@1; [X* X2 X3]; [FI@0];

Measurement Invariance

Measurement invariance addresses the key question of whether the latent constructs have the same meaning across samples (multi-group invariance), situations (longitudinal invariance), or even testing procedure (e.g., online versus paper, which is a form of multi-group invariance).

Non-invariance indicates that the constructs are not comparable, and thus that means, or relations among constructs, cannot be compared across samples, situations, etc.

Туре	Meaning
Configural Invariance	 The same <u>model</u> (including the same number of factors, the same type of relations among factors, and the same item-factor correspondence) is consistent with the data across samples . Lack of invariance precludes any form of comparisons across samples.
Weak (metric, pattern) Invariance	 The same <u>factor loadings</u> reflect the item-factor relations across samples. The constructs have the same meaning, are manifested in the same way, across samples. This form of invariance is a <u>prerequisite to the comparison of latent variances, latent covariances, or latent relations across groups.</u> A lack of invariance indicates that the instrument does not measure the same construct across groups, precluding any other form of comparison.

Туре	Meaning
Strong (scalar) Invariance	 The factor loadings and <u>item intercepts</u> are the same across groups. This form of invariance is a <u>prerequisite to the comparison of latent means across groups.</u> Lack of invariance shows that the different groups use the items' response scale differently, that the groups can score higher or lower on the various indicators irrespective of group differences occurring at the latent factor level.
Strict Invariance	 The factor loadings, item intercepts, and <u>item</u> <u>uniquenesses</u> are the same across groups. This form of invariance is a <u>prerequisite to any</u> form of comparison based on manifest scores across groups. Lack of invariance shows that the constructs are assessed with different levels of reliability (measurement error across groups).

Type	Meaning
Latent Variance & Covariance Invariance	• Test whether the variances and covariances between the constructs are equivalent across groups.
Latent Means Invariance	• Test for the presence of latent mean differences(or lack thereof) across subgroups.

ANALYSIS:					
TYPE = general; ESTIMATOR = MLR;					
ROTATION = Geomin (.5);					
MODEL:	_				
FI-F2 BY qI q2 q3 q4 q5 q6 q7 q8 (*I);					
ANALYSIS:	These two blocks are				
ANALYSIS: TYPE = general; ESTIMATOR = MLR;	These two blocks are treated interchangeably, and				
ANALYSIS: TYPE = general; ESTIMATOR = MLR; ROTATION = Target (Oblique);	These two blocks are treated interchangeably, and specified in the same				
ANALYSIS: TYPE = general; ESTIMATOR = MLR; ROTATION = Target (Oblique); MODEL:	These two blocks are treated interchangeably, and specified in the same manner throughout.				
ANALYSIS: TYPE = general; ESTIMATOR = MLR; ROTATION = Target (Oblique); MODEL: POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7 [,]	These two blocks are treated interchangeably, and specified in the same manner throughout. ~0 (*1);				

MODEL: POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1); NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1); POSF@1; NEGF@1; q1-q8; [q1-q8]; [POSF@0]; With older versions of Mplus, ESEM does not

MODEL FEM:

[NEGF@0];

```
POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1);
NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1);
POSF@1; NEGF@1;
```

work when variances

specification are given in the general section.

q1-q8; [q1-q8]; [POSF@0]; [NEGF@0];

MODEL: POSF BY q1 q2 q3 q4 q8 q5~0 NEGF BY q5 q6 q7 q1~0 q2~0 POSF@1; NEGF@1; q1-q8;	q6~0 q7~0 (*I); q3~0 q4~0 q8~0 (*I);
[ql-q8];	
[POSF@0];	Loadings are invariant by
[NEGF@0];	default. There is no other
	way to test weak invariance
MODEL FEM:	than to simply take out the
11111	loadings from all
POSF*; NEGF*;	subsequent groups.
q I -q8;	
[ql-q8];	
[POSF@0];	
[NEGF@0];	

MODEL: STRONG POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1); NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1); POSF@1; NEGF@1; q1-q8; [q1-q8] (11-i8); [POSF@0]; [NEGF@0]; [NEGF@0]; MODEL FEM: POSF*; NEGF*; q1-q8; [q1-q8] (11-i8); [POSF*]; [NEGF*];

```
MODEL: STRICT
POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1);
NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1);
POSF@1; NEGF@1;
q1-q8 (u1-u8);
[q1-q8] (i1-i8);
[POSF@0];
NODEL FEM:
POSF*; NEGF*;
q1-q8 (u1-u8);
[q1-q8] (i1-i8);
[POSF*];
[NEGF*];
```

MODEL: Var POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1 1); NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1 1); Covar POSF@1; NEGF@1; POSF WITH NEGF (cl); ql-q8 (ul-u8); [ql-q8] (il-i8); [POSF@0]; [NEGF@0]; MODEL FEM: POSF@1; NEGF@1; POSF WITH NEGF (c1); ql-q8 (ul-u8); [ql-q8] (il-i8); [POSF*]; [NEGF*];

MODEL: POSF BY q1 q2 q3 q4 q8 q5~0 q6~0 q7~0 (*1 1); NEGF BY q5 q6 q7 q1~0 q2~0 q3~0 q4~0 q8~0 (*1 1 POSF@1; NEGF@1; POSF WITH NEGF (c1); q1-q8 (u1-u8); [q1-q8] (i1-i8); [POSF@0]; [NEGF@0];	MEANS);
MODEL FEM: POSF@1; NEGF@1; POSF WITH NEGF (c1); q1-q8 (u1-u8); [q1-q8] (i1-i8); [POSF@0]; [NEGF@0];	

Special Considerations ESEM estimation (WLSMV)

Follow the guidelines provided for **ESEM** for the factor **loadings**, **variances**, **and covariances**.

However, different guidelines apply to the **thresholds**, means, and uniquenesses.

For an example with syntax, see:

Guay, F., Morin, A.J.S, Litalien, D., Valois, P., & Vallerand, R.J. (2015). Application of Exploratory Structural Equation Modeling to Evaluate the Academic Motivation Scale. *Journal of Experimental Education, 83* (1), 51-82. DOI: 10.1080/00220973.2013.876231 And **Morin (2023) in Hoyle's**

123

Special Considerations

Bifactor-CFA and Bifactor-ESEM

Follow the guidelines provided for **CFA** for tests of invariance using **bifactor-CFA** models.

Follow the guidelines provided for **ESEM** for **Bifactor-ESEM** models. Because constraints are imposed on non-rotated parameters, equality constraints still need to be imposed on the covariance structure (factor correlations) even if the rotated solution is orthogonal (i.e., they are not @0, but rotated to 0).

For examples of Bifactor-ESEM with syntax, see:

MLR: Morin, A.J.S., Arens, A.K., & Marsh, H.W. (2016). A Bifactor Exploratory Structural Equation Modeling Framework for the Identification of Distinct Sources of Construct-Relevant Psychometric Multidimensionality. *Structural Equation Modeling*, 23, 116-139.

WLSMV: Morin, A.J.S., Arens, A.K., Tran, A., & Caci, H. (2016). Exploring Sources of Construct-Relevant Multidimensionality in Psychiatric Measurement: A Tutorial and Illustration using the Composite Scale of Morningness. *International Journal of Methods in Psychiatric Research*, *25*, 277-288 And

Morin (2023) in Hoyle's

ESEM and Bifactor-ESEM Multi-Group Invariance:

We just created a new online tool to help generate Mplus syntax for tests of invariance across groups for exploratory structural equation models (ESEM), and bifactor-ESEM models using polytomous data (continuous with MLR estimation or ordinal with WLSMV estimation). The tool can be accessed at https://statstools.app/b_esem/

Problems should be reported to : leondb@gmail.com

Citation to use for this tool:

De Beer, L.T., & Morin, A.J.S (2022). (B)ESEM invariance syntax generator for Mplus. Retrieved from https://statstools.app/b_esem/ doi: 10.6084/m9.figshare.19360808

125

Special Considerations

Higher-Order Models: WLSMV or MLR

- Start with a first-order measurement model, with no higher-order structure.
- Conduct all steps of invariance.
- Starting with the most invariant model, up to strict invariance only, add the higher-order factor structure.
- Test the invariance of the higher-order factor structure.

For an example with syntax applied to WSLMV, see:

Morin A.J.S., Moullec G., Maïano C., Layet, L., Just, J.-L., & Ninot G. (2011). Psychometric properties of the Center for Epidemiologic Studies Depression Scale (CES-D) in French Clinical and Non-Clinical Adults. *Epidemiology and Public Health/Revue d'Épidémiologie et de Santé Publique, 59* (5), 327-340.

FX_TI BY XI_tI X2_tI X3_tI	FX_T2 BY XI_t2 X2_t2 X3_t2
YI_tI~0 Y2_tI~0 Y3_tI~0 (*tl);	YI_t2~0 Y2_t2~0 Y3_t2~0 (*t2);
FY_TIBY YI_tI Y2_tI Y3_tI	FY_T2 BY YI_t2 Y2_t2 Y3_t2
XI_tI~0 X2_tI~0 X3_tI~0 (*tl);	XI_t2~0 X2_t2~0 X3_t2~0 (*t2);
[XI_tI X2_tI X3_tI];	[XI_t2 X2_t2 X3_t2];
[YI_tI Y2_tI Y3_tI];	[YI_t2 Y2_t2 Y3_t2];
XI_tI X2_tI X3_tI;	XI_t2 X2_t2 X3_t2;
YI_tI Y2_tI Y3_tI;	YI_t2 Y2_t2 Y3_t2;
FX_TI@I; FY_TI@I;	FX_T2@I; FY_T2@I;
[FX_T1@0]; [FY_T1@0];	[FX_T2@0]; [FY_T2@0];

XI_tI X2_tI X3_tI pwith XI_t2 X2_t2 X3_t2;

Weak		
FX_TI BY XI_tI X2_tI X3_tI	FX_T2 BY XI_t2 X2_t2 X3_t2	
YI_tI~0 Y2_tI~0 Y3_tI~0 (*tI I);	YI_t2~0 Y2_t2~0 Y3_t2~0 (*t2 I);	
FY_TIBY YI_tI Y2_tI Y3_tI	FY_T2 BY Y1_t2 Y2_t2 Y3_t2	
XI_tI~0 X2_tI~0 X3_tI~0 (*tI I);	XI_t2~0 X2_t2~0 X3_t2~0 (*t2 l);	
[XI_tI X2_tI X3_tI];	[XI_t2 X2_t2 X3_t2];	
[Y1_tl Y2_tl Y3_tl];	[YI_t2 Y2_t2 Y3_t2];	
XI_tI X2_tI X3_tI;	XI_t2 X2_t2 X3_t2;	
YI_tI Y2_tI Y3_tI;	YI_t2 Y2_t2 Y3_t2;	
FX_TI@I; FY_TI@I;	FX_T2*; FY_T2*;	
[FX_T1@0]; [FY_T1@0];	[FX_T2@0]; [FY_T2@0];	

 $XI_tI X2_tI X3_tI$ pwith $XI_t2 X2_t2 X3_t2$;

129

Strong		
FX_TI BY XI_tI X2_tI X3_tI	FX_T2 BY XI_t2 X2_t2 X3_t2	
YI_tI~0 Y2_tI~0 Y3_tI~0 (*tI I);	YI_t2~0 Y2_t2~0 Y3_t2~0 (*t2 I);	
FY_TIBY YI_tI Y2_tI Y3_tI	FY_T2 BY Y1_t2 Y2_t2 Y3_t2	
XI_tI~0 X2_tI~0 X3_tI~0 (*tI I);	XI_t2~0 X2_t2~0 X3_t2~0 (*t2 I);	
[XI_tI X2_tI X3_tI] (iI-i3);	[XI_t2 X2_t2 X3_t2] (i1-i3);	
[YI_tI_Y2_tI_Y3_tI] <mark>(i4-i6);</mark>	[YI_t2 Y2_t2 Y3_t2] (i4-i6);	
XI_tI X2_tI X3_tI;	XI_t2 X2_t2 X3_t2;	
YI_tI Y2_tI Y3_tI;	YI_t2 Y2_t2 Y3_t2;	
FX_TI@I; FY_TI@I;	FX_T2*; FY_T2*;	
[FX_T1@0]; [FY_T1@0];	[FX_T2*]; [FY_T2*];	

XI_tI X2_tI X3_tI pwith XI_t2 X2_t2 X3_t2;

XI_tI X2_tI X3_tI pwith XI_t2 X2_t2 X3_t2;

Var-Cov		
FX_TI BY XI_tI X2_tI X3_tI	FX_T2 BY XI_t2 X2_t2 X3_t2	
YI_tI~0 Y2_tI~0 Y3_tI~0 (*tI I);	YI_t2~0 Y2_t2~0 Y3_t2~0 (*t2 I);	
FY_TI BY YI_tI Y2_tI Y3_tI	FY_T2 BY YI_t2 Y2_t2 Y3_t2	
XI_tI~0 X2_tI~0 X3_tI~0 (*tI I);	XI_t2~0 X2_t2~0 X3_t2~0 (*t2 I);	
[XI_tI X2_tI X3_tI] (i1-i3);	[XI_t2 X2_t2 X3_t2] (i1-i3);	
[YI_tI_Y2_tI_Y3_tI] (i4-i6);	[YI_t2 Y2_t2 Y3_t2] (i4-i6);	
XI_tI X2_tI X3_tI (ul-u3);	XI_t2 X2_t2 X3_t2 (uI-u3);	
YI_tI Y2_tI Y3_tI (u4-u6);	YI_t2 Y2_t2 Y3_t2 (u4-u6);	
FX_TI@I; FY_TI@I;	FX_T2@I; FY_T2@I;	
FX_TI WITH FY_TI (cl);	FX_T2WITH FY_T2 (c1);	
[FX_T1@0]; [FY_T1@0];	[FX_T2*]; [FY_T2*];	
XI_tI X2_tI X3_tI pwith XI_t2 X2_t2 X3_t2;		

Limitations of ESEM

Identification is automatically UVI (Unit Variance Identification) for the variance-covariance matrix: For comparison purposes, it is useful to also use UVI with other models. The full latent variance-covariance matrix "moves" together:

- All factors forming a set need to be simultaneously related to the same variables outside of this set (predictors, outcomes, correlates), in the same manner.
- 2) Constraints need to be imposed on the full latent-variance covariance matrix simultaneously (no separate tests of the invariance of factor variances versus covariances).

3) No partial test of weak invariance (factor loadings) are possible.
In is not possible to impose constraints on factor loadings.
Higher-order ESEM models cannot be estimated, **BUT**...
Multilevel or mixture applications of EFA factors are limited.

Higher-Order ESEM

It is not directly possible to estimate higher-order CFA factor(s) from first-order ESEM factors. However, it is possible to reproduce the first-order ESEM model using the CFA framework, and then to use this model to estimate a higher-order CFA factor from the first-order ESEM factors.

It is not directly possible to estimate higher-order ESEM factor(s) from first-order ESEM or CFA factors. However, it is possible to use the latent variance-covariance matrix of the ESEM or CFA solution as the input (rather than using the raw data) for the higher-order analysis.

EFA-within-CFA

Jöreskog (1969) proposed EFA-within-CFA to estimate EFA-like factors (with all possible cross-loadings) in CFA/SEM.

The idea is to build in sufficient constraints for identification, that is m^2 restrictions where m=number of factors.

- I. Constrain all factor variances to I (UVI) = m restrictions.
- 2. Select one referent indicator per factor and constrain all cross-loadings to 0 for this indicator = m^2 m restrictions.

e.g., 3 factors (4 factors)

- I. 3 variances = 3 restrictions (4)
- 2. 2 cross-loadings * 3 factors = 6 restrictions (4*3 = 12)

139

ESEM-within-CFA

From this idea, Marsh, Nagengast, and Morin (2012) and Morin, Marsh, & Nagengast (2013) proposed ESEM-within-CFA as a way to **circumvent many limitations of ESEM**.

The SVALUES command of the output section will provide the exact starts values from the final selected ESEM solution.

These starts values then need to be pasted in the model section of the new ESEM-within-CFA input, and relevant constraints are then added to reach m^2 restrictions.

- I. Constrain all factor variances to I = m restrictions.
- 2. Select one referent indicator per factor and constrain (@) all of its cross-loadings to their exact ESEM values = $m^2 m$ restrictions.
- 3. Freely estimate all other parameters (*) using their exact start value from the ESEM solution.

- Marsh, H.W., Nagengast, B., & Morin, A.J.S. (2013). Measurement invariance of big-five factors over the life span: ESEM tests of gender, age, plasticity, maturity, and La Dolce Vita effects. *Developmental Psychology*, 49, 1194-1218.
- Morin, A. J. S., Marsh, H.W., & Nagengast, B. (2013). Exploratory structural equation modeling. In Hancock, G. R., & Mueller, R. O. (Eds.). Structural equation modeling: A second course (2nd ed., pp. 395-436). Charlotte, NC: Information Age Publishing, Inc.

Higher-Order ESEM with ESEM-Within-CFA

- Also need to fix the main loading of the referent indicator to its ESEM value, allowing for the free estimation of firstorder factor variances.
- See: Morin, A.J.S., & Asparouhov, T. (2018). Estimation of a hierarchical Exploratory Structural Equation Model (ESEM) using ESEM-within-CFA. Montreal, QC: Substantive Methodological Synergy Research Laboratory.

https://smslabstats.weebly.com/uploads/1/0/0/6/100647486/webn ote_-_hierarchical_exploratory_structural_equation_model.pdf

X2

Х3

Y2

Y3

145

Factor Covariance Matrix

At the end of the input for the final first-order ESEM (or CFA) model, indicate:

SAVEDATA:

TECH4 IS tech4.dat;

Then use this file as the data set for further analyses.

DATA:

File is tech4.dat;

TYPE is MEANS COVARIANCE;

NOBSERVATIONS = 1000; ! Your sample size

With the order of the USEVARIABLE list corresponding to the order of appearance of the latent variables (see TECH4 for details).

OR

Simply save the factor scores from the model and use them as indicators of the higher-order factor:

SAVEDATA:

FILE IS FSCORES.dat;

SAVE = Fscores;

This will create a new data file including the items used in the analysis (and listed as auxiliary), followed by the ID variable and then the factor scores. Mplus provides this list at the end of the output:

SAVEDATA INFORMATION

Save file

FSCORESLTA.dat

Order and format of variables

MISSING ARE ALL *

147

