
Department of National Defense Longitudinal Analysis Training 

Seminar

Presented by: Simon Houle

In collaboration with Dr.  Alexandre Morin and the Substantive 

Methodological Synergy Research Laboratory

Why Longitudinal Data?

• Directionality 

• Change

• Shape of change



Overview
• Brief introduction to Mplus

• Setting the scale for latent variables

• The meaning of time 

• Longitudinal measurement invariance in Mplus

• Basic longitudinal models

• Auto-regressive crossed-lagged models

• State-trait-error models

• Latent change models

• Cross sectional application for latent change models

• Latent curve models









First, get a data set





Title: 

Title of the model to be estimated;

!  Annotations following “!” are discarded by the program

! The TITLE function is not mandatory. 

! All commands end with “;”

! All section titles end with “:”’

Data: 

File is longitudinaldata.csv; 

! The FILE function of the DATA section is used to identify your 

! data set. If the data set is in the same folder, then this is fine. 

! If the data set is in another folder, then the full link is indicated.

File is D:\DOCUMENTS\Cours\LATENT VARIABLE 

MODELING\longitudinaldata.csv;

VARIABLE: 

Names are ID sex q1 q2 q3 q4 q5 q6 q7 q8; 

! The NAMES function lists, in order, all variables in the data set. 

Usevariables are q1 q2 q3 q4 q5 q6 q7 q8; 

! The USEVARIABLES function lists those used in the analysis. 

Missing are all (-999);

! The MISSING function identifies the missing data code.

Idvariable = ID;

! The IDVARIABLE identifies the unique identifier.

Auxiliary = sex; 

Auxiliary = sex (m); 

! Sometimes, one wants to save the results from an analysis to an 

! external data file (e.g., scores on the factors). This external data 

! file will include all variables included in the analyses + those 

! listed as auxiliary. The (m) indicators allows auxiliary variables 

! to be taken into account in the missing data process. 



ANALYSIS:

TYPE = General;

ESTIMATOR = MLR; ! Or ML, etc.

! MLR is robust to multivariate non-normality

! MLR can be made to be robust to nesting. 

MODEL: 

!!! This is where everything happens !

A simple correction for nesting: 

VARIABLE:

NAMES = ID sex q1 q2 q3 q4 q5 q6 q7 q8;

USEVARIABLES = q1 q2 q3 q4 q5 q6 q7 q8;

Missing are all (-999);

Idvariable = ID;

CLUSTER = Unit;
Analysis:

TYPE = COMPLEX; 

ESTIMATOR = MLR; 



SAMPSTAT: sample descriptive. 

STANDARDIZED: Standardized parameter estimates. 

CINTERVAL: Confidence intervals for parameter estimates. 

RESIDUAL: Residuals for parameter estimates. 

MODINDICES: Modification indices.

SVALUES: Starts Values.

TECH1: Parameter specifications and starts values (not for EFA).

TECH3: Correlations and covariances for parameter estimates.

TECH4: Means, Correlations and covariances for the latent variables.

MODEL: 
!!! This is where everything happens !
OUTPUT: 
SAMPSTAT STANDARDIZED MODINDICES CINTERVAL 
RESIDUAL SVALUES TECH1 TECH3 TECH4 ;

MODEL:
ON: Defines a regression e.g., Y ON X;

WITH: Defines a correlation e.g., X WITH Y;

BY: Defines a factor loading e.g., F1 BY X1 X2 X3;

[ ]:  Variable names within brackets define intercepts and means e.g., [X1]; or [F1]; 

Variable names: By themselves,  variable names define variances, uniquenesses 

and disturbances e.g., X1; or F1;

*: Is used to request the free estimation of a parameter that would otherwise be 

constrained e.g., F1 BY X1* X2 X3; or to provide a start value for a parameter 

e.g., F1 BY X1*.900 X2*.850 X3*800;

@: Is used to constrain a parameter to a specific value  e.g., F1 BY X1@1 X2 X3; 

(): alphanumeric codes in parentheses following a parameter can be used to 

constrain parameters to equality, e.g. F1 BY X1* (l1) X2 (l2);



*** WARNING

Data set contains cases with missing on x-variables.

These cases were not included in the analysis.

Number of cases with missing on x-variables:  61

*** WARNING

Data set contains cases with missing on all variables except

x-variables.  These cases were not included in the analysis.

Number of cases with missing on all variables except x-

variables:  30

By explicitly requesting the free 
Estimation of the variance of the
Exogenous variables in the MODEL: 
section, FIML will be activated. 
X1 X2 X3;

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters                       13

Loglikelihood

H0 Value                       -7221.664

H0 Scaling Correction Factor      1.6859

for MLR

H1 Value                       -7221.604

H1 Scaling Correction Factor      1.6256

for MLR

Information Criteria

Akaike (AIC)                   14469.328

Bayesian (BIC)                 14537.107

Sample-Size Adjusted BIC       14495.811

(n* = (n + 2) / 24)



Chi-Square Test of Model Fit

Value                             97.470*

Degrees of Freedom                    19

P-Value                           0.0000

Scaling Correction Factor         1.4070

for MLR

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 

cannot be used for chi-square difference testing in the regular way.  MLM, MLR 

and WLSM chi-square difference testing is described on the Mplus website.  

MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST 

option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate                           0.055

90 Percent C.I.                    0.045  0.066

Probability RMSEA <= .05           0.203

CFI/TLI

CFI                                0.947

TLI                                0.922

SRMR (Standardized Root Mean Square Residual)

Value                              0.040

Δχ2

The difference in the χ2 of two nested models is distributed as a 

χ2 with degrees of freedom corresponding to the difference in 

degrees of freedom between the two models. 

BUT

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM 

and WLSMV cannot be used for chi-square difference testing in 

the regular way.  MLM, MLR and WLSM chi-square difference 

testing is described on the Mplus website.  MLMV, WLSMV, and 

ULSMV difference testing is done using the DIFFTEST option.

For MLR, one needs to rely on the Satorra-Bentler correction. 

https://www.statmodel.com/chidiff.shtml

https://www.statmodel.com/chidiff.shtml


MODEL RESULTS

Two-Tailed

Estimate    S.E.  Est./S.E.    P-Value

POSF     BY

Q1                 1.000      0.000    999.000    999.000

Q2                 1.175      0.061     19.371      0.000

POSF ON

ZSELFEST           0.225      0.027      8.272      0.000

ZDEPRESS ON

ZSELFEST          -0.346      0.037     -9.418      0.000

ZSELFEST WITH

ZLONELY           -0.246      0.032     -7.688      0.000

Means

Intercepts

Variances

Residual Variances

POSF                 0.936      0.050     18.751      0.000

Q1                     0.883      0.049     17.982      0.000

Unstandardized 
regression (b)

Covariance

Means, 
Intercept, 
Variances

Residuals 
(Disturbances, 
uniquenesses)

Unstandardized 
loading

STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed

Estimate       S.E.  Est./S.E.    P-Value

POSF     BY

Q1                 0.583      0.028     21.101      0.000

Q2                 0.727      0.023     31.835      0.000

POSF ON

ZSELFEST           0.225      0.027      8.472      0.000

ZDEPRESS ON

ZSELFEST          -0.346      0.034    -10.305      0.000

ZSELFEST WITH

ZLONELY           -0.246      0.028     -8.875      0.000

Means

Intercepts

Variances

Residual Variances

POSF  0.936      0.013     72.868      0.000

Q1 0.882      0.022     39.564      0.000

Standardized 
regression (β)

Correlation (r)

NA

Standardized 
Residuals

Standardized 
loading



R-SQUARE

Observed                                        Two-Tailed

Variable       Estimate       S.E.  Est./S.E.    P-Value

ZGPA               0.064      0.013      4.948      0.000

ZDEPRESS        0.118      0.022      5.297      0.000

Q1                 0.340      0.032     10.550      0.000

Q2                 0.529      0.033     15.917      0.000

Q3                 0.430      0.035     12.212      0.000

Q4                 0.551      0.035     15.578      0.000

Q5                 0.753      0.071     10.544      0.000

% Explained 
variance

Communality (h2)

CONFIDENCE INTERVALS OF MODEL RESULTS

Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%

ZGPA     ON

ZSELFEST         0.155       0.172 0.180       0.225 0.270       0.278 0.295

ZDEPRESS        -0.141      -0.122      -0.112      -0.060      -0.009      0.001       0.021

ZDEPRESS ON

ZSELFEST        -0.441      -0.418      -0.407      -0.346      -0.286      -0.274      -0.252

ZLONELY         -0.087      -0.068      -0.059     -0.009       0.041      0.050       0.069

[…]
CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS

STDYX Standardization

Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%

ZGPA     ON

ZSELFEST         0.157      0.173       0.181       0.225 0.269       0.277 0.293

ZDEPRESS        -0.142     -0.122      -0.112     -0.060 -0.008      0.001       0.021



Preliminary Measurement Models
Setting the Scale?

Unless the units are meaningful, all methods are “almost” equivalent. 

• Referent Variable: This scale is arbitrary and can change depending on the 

selected referent variable. 

• Latent Standardization: The “natural” scale is lost, and the mean of the 

intercept factor becomes 0. This method also means that it is not the 

mean/variance of the first order factor that is constrained, but their 

intercepts/disturbances (as they are themselves explained by the second 

order intercept and slope factors).  Another possibility is to fix the loading of 

a referent indicator to its value in the longitudinal CFA model, in order to 

freely estimate a variance that will be close to 1. 

• Effects Coding: Ideal, but more prone to convergence problems. 

ξ2

X6 X7 X8

1
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Referent Indicator
Explicit 

Model: 

POSF BY q1@1 q2 q3 q4 q8; 

NEGF BY q5@1 q6 q7; 

POSF*; NEGF*; 

[q1@0];

[q5@0];

[POSF*];

[NEGF*]; 

Model: 

POSF BY q1 q2 q3 q4 q8; 

NEGF BY q5 q6 q7; 

[q1@0];

[q5@0];

[POSF*];

[NEGF*]; 

Means and Intercepts 
are identified with 
brackets []



Standardized factors
Explicit

Model: 

POSF BY q1* q2 q3 q4 q8; 

NEGF BY q5* q6 q7; 

POSF@1; NEGF@1; 

[POSF@0];

[NEGF@0]; 

Model: 

POSF BY q1* q2 q3 q4 q8; 

NEGF BY q5* q6 q7; 

POSF@1; NEGF@1; 

By default, Mplus freely 
estimates all intercepts 
and constrain factors 
means to be 0. 

Effects Coding
Model: 

POSF BY q1* (l1) 

q2 q3 q4 q8 (l2-l5); 

NEGF BY q5* (l6) 

q6 q7 (l7-l8); 

POSF*;  NEGF*;

[q1-q8] (i1-i8);

[POSF*]; [NEGF*]; 

MODEL CONSTRAINT: 

l1 = 5 - l2 - l3 - l4 – l5 ; 

l4 = 3 – l7 – l8; 

i1 = 0-i2-i3-i4-i8; 

i5 = 0-i6-i7; 



Longitudinal 
Structural Equation 

Modeling
(continuous latent 

variables)





Why Longitudinal Data?

• Directionality 

• Change

• Shape of change

Assumptions



(1) The Meaning of Time. 

(2) Measurement Invariance.

(3) Changes in Means and 

Variances. 

(4) Wording Effects (with Latent 

Models).

(5) Predictive Equilibrium. 

The Meaning(s) of Time
• Temporal Ordering: In some longitudinal studies, time simply 

serves to map temporal ordering: Year 1 of data collection, year 2, 

year 3, among a sample of participants of different age groups. 

• Meaningful Variable: In some other studies, time is a meaningful 

variable and reflects the effect of age, tenure, etc.

• Change: Yet, in some other studies, time will reflect the impact of 

some natural (puberty, life transition) or experimental 

(intervention, experimentation, etc.) change that is also important. 

• In a autoregressive cross-lagged models, time typically simply 

serves to map the temporal ordering of the relations. However, 

these analyses can also serve to test the effects of changes in a 

“pre-post” manner. 

• When participants are really far apart in age, it might be useful to 

control for age in the estimation of the models. 



The Meaning(s) of Time
• Over and above these considerations, many have noted the 

importance to think about the specific time interval that is used in 

a specific study, showing that it did importantly change the results. 

• Not always possible. 

• What do we know about the stability of the various constructs? 

• Over which length of time can we expect change, both empirically 

and theoretically?

• How does that fit the research question. 

Cole, D. A., & Maxwell, S. E. (2003). Testing meditational models with longitudinal 

data: Questions and tips in the use of structural equation modeling. Journal of 

Abnormal Psychology, 112, 558–577.

Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal 

mediation. Psychological Methods, 12, 23–44.

Selig, J.P. & Preacher, K.J. (2009). Mediation models for longitudinal data in 

developmental research. Research in Human Development, 6, 144-164. 

Measurement invariance
• It is important to ascertain that the meaning of the constructs 

of interest has not changed over time. 

• When latent constructs are used, and the only objective is to 

test for the relations among constructs, only weak (or partial 

weak) invariance (i.e. factor loadings) is required with 

continuous indicators. 

• When latent constructs are used, and one also wants to test 

for latent mean differences, then strong (or partial strong) 

invariance (i.e. factors loadings and intercepts) is required. 

• When manifest scores are used, then strict invariance (or 

partial strict (i.e., factors loadings, intercepts, and 

uniquenesses) is required.
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Changes in Means and Variances
• A longitudinal measurement model can also be used to test for latent 

variances, latent covariances, and latent means differences as a function 

of time. 

• This is the latent variable approach to repeated measures ANOVAs.

• When moving from a measurement model to a predictive model, even 

though only weak/strong invariance is required in a fully latent model, it 

remains useful to start from a model of strict invariance, and even from 

a model in which the latent variances and means are set to invariance 

when this is possible, as this induces parsimony in the model 

(maximising power). 

• It also makes the variances and means easier to interpret (in SD units). 

Otherwise, they will still be interpretable in SD units of the first time 

point (if relying on the standardized factor approach).  

• Not the covariances, as these do not have the same meaning in 

measurement versus predictive (residual covariances) models. 



Changes in Means and Variances
• Sometimes it is not possible to rely on a fully latent predictive 

model: The complexity of the model becomes too great, and the 

model crashes. However, sometimes, it is still possible to 

estimate the fully latent measurement model. 

• In these situations, invariance can, and should be tested. 

• When this does not work, it should still be tested across pairs of 

time points. 

• When invariance can be tested, it can be useful to rely on factor 

scores, rather than scale scores, as these provide a partial 

control for measurement errors, and can be saved from a model 

of strict invariance, or even of latent variances, covariances, and 

means invariance. 

Wording Effects (Latent Models)

• In a longitudinal study, the same set of factor indicators are 

utilized at the different time points. 

• This creates a methodological artefact given that what is 

“unique” to each item (uniqueness) becomes shared with what is 

unique to the same item measured at the other time points. 

• Latent longitudinal models thus need to include correlated 

uniquenesses among matching indicators. 

• Not doing so would risk inflating the autoregressive (stability) 

parameters. 



Fully Latent Models
• In fully latent model, the decision to rely on the referent indicator, latent 

standardisation, or effects coding method will have a direct effect on the 

estimates of the average intercept ([i]), but also on the estimate of the means 

and variances of the other growth factors ([s] will be expressed as deviation 

from [i] in SD units if using the standardized factor approach). 

• Preliminary: Longitudinal invariance of the repeated measures: 

o Requirement: Strong invariance. 

o Better: Strict invariance (makes the model more parsimonious)

o Latent variance-covariances: not necessary, and results in invariant time-

specific residuals in the LCM, not variances. 

o Latent means: invariance suggest that, on the average, there is no growth.

o The fully latent model should start from  a model of strong or strict 

invariance – maximum.

Longitudinal Invariance
FX_T1 BY X1_t1* X2_t1 X3_t1; 

FY_T1 BY  Y1_t1*  Y2_t1  Y3_t1; 

[X1_t1 X2_t1 X3_t1]; 

[Y1_t1  Y2_t1  Y3_t1]; 

X1_t1 X2_t1 X3_t1; 

Y1_t1  Y2_t1  Y3_t1; 

FX_T1@1;  FY_T1@1;

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* X2_t2 X3_t2; 

FY_T2 BY  Y1_t2*  Y2_t2 Y3_t2; 

[X1_t2 X2_t2 X3_t2]; 

[Y1_t2 Y2_t2 Y3_t2]; 

X1_t2 X2_t2 X3_t2; 

Y1_t2 Y2_t2 Y3_t2; 

FX_T2@1;  FY_T2@1;

[FX_T2@0];  [FY_T2@0];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 

! Equivalent to 

! X1_t1 WITH X1_t2; X2_t1 WITH X2_t2; X3_t1 WITH X3_t2;



Weak Invariance
FX_T1 BY X1_t1* (l1)

X2_t1 X3_t1 (l2-l3); 

FY_T1 BY  Y1_t1* (l4)

Y2_t1  Y3_t1 (l5-l6); 

[X1_t1 X2_t1 X3_t1]; 

[Y1_t1  Y2_t1  Y3_t1]; 

X1_t1 X2_t1 X3_t1; 

Y1_t1  Y2_t1  Y3_t1; 

FX_T1@1;  FY_T1@1;

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* (l1)

X2_t2 X3_t2 (l2-l3); 

FY_T2 BY  Y1_t2*  (l4)

Y2_t2  Y3_t2 (l5-l6); 

[X1_t2 X2_t2 X3_t2]; 

[Y1_t2  Y2_t2  Y3_t2]; 

X1_t2 X2_t2 X3_t2; 

Y1_t2  Y2_t2  Y3_t2; 

FX_T2*;  FY_T2*;

[FX_T2@0];  [FY_T2@0];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 

Strong Invariance
FX_T1 BY X1_t1* (l1)

X2_t1 X3_t1 (l2-l3); 

FY_T1 BY  Y1_t1*  (l4)

Y2_t1  Y3_t1 (l5-l6); 

[X1_t1 X2_t1 X3_t1] (i1-i3); 

[Y1_t1  Y2_t1  Y3_t1] (i4-i6); 

X1_t1 X2_t1 X3_t1; 

Y1_t1  Y2_t1  Y3_t1; 

FX_T1@1;  FY_T1@1;

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* (l1)

X2_t2 X3_t2 (l2-l3); 

FY_T2 BY  Y1_t2*  (l4)

Y2_t2  Y3_t2 (l5-l6); 

[X1_t2 X2_t2 X3_t2] (i1-i3); 

[Y1_t2  Y2_t2  Y3_t2] (i4-i6); 

X1_t2 X2_t2 X3_t2; 

Y1_t2  Y2_t2  Y3_t2; 

FX_T2*;  FY_T2*;

[FX_T2*];  [FY_T2*];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 



Strict Invariance
FX_T1 BY X1_t1* (l1)

X2_t1 X3_t1 (l2-l3); 

FY_T1 BY  Y1_t1*  (l4)

Y2_t1  Y3_t1 (l5-l6); 

[X1_t1 X2_t1 X3_t1] (i1-i3); 

[Y1_t1  Y2_t1  Y3_t1] (i4-i6); 

X1_t1 X2_t1 X3_t1 (u1-u3);  

Y1_t1  Y2_t1  Y3_t1 (u4-u6); 

FX_T1@1;  FY_T1@1;

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* (l1)

X2_t2 X3_t2 (l2-l3); 

FY_T2 BY  Y1_t2*  (l4)

Y2_t2  Y3_t2 (l5-l6); 

[X1_t2 X2_t2 X3_t2] (i1-i3); 

[Y1_t2  Y2_t2  Y3_t2] (i4-i6); 

X1_t2 X2_t2 X3_t2 (u1-u3); 

Y1_t2  Y2_t2  Y3_t2 (u4-u6); 

FX_T2*;  FY_T2*;

[FX_T2*];  [FY_T2*];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 

Var-Covar Invariance
FX_T1 BY X1_t1* (l1)

X2_t1 X3_t1 (l2-l3); 

FY_T1 BY  Y1_t1*  (l4)

Y2_t1  Y3_t1 (l5-l6); 

[X1_t1 X2_t1 X3_t1] (i1-i3); 

[Y1_t1  Y2_t1  Y3_t1] (i4-i6); 

X1_t1 X2_t1 X3_t1 (u1-u3);  

Y1_t1  Y2_t1  Y3_t1 (u4-u6); 

FX_T1@1;  FY_T1@1;

FX_T1 WITH FY_T1 (c1);

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* (l1)

X2_t2 X3_t2 (l2-l3); 

FY_T2 BY  Y1_t2*  (l4)

Y2_t2  Y3_t2 (l5-l6); 

[X1_t2 X2_t2 X3_t2] (i1-i3); 

[Y1_t2  Y2_t2  Y3_t2] (i4-i6); 

X1_t2 X2_t2 X3_t2 (u1-u3); 

Y1_t2  Y2_t2  Y3_t2 (u4-u6); 

FX_T2@1;  FY_T2@1; 

FX_T2 WITH FY_T2 (c1);

[FX_T2*];  [FY_T2*];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 



Latent Means Invariance
FX_T1 BY X1_t1* (l1)

X2_t1 X3_t1 (l2-l3); 

FY_T1 BY  Y1_t1*  (l4)

Y2_t1  Y3_t1 (l5-l6); 

[X1_t1 X2_t1 X3_t1] (i1-i3); 

[Y1_t1  Y2_t1  Y3_t1] (i4-i6); 

X1_t1 X2_t1 X3_t1 (u1-u3);  

Y1_t1  Y2_t1  Y3_t1 (u4-u6); 

FX_T1@1;  FY_T1@1;

FX_T1 WITH FY_T1 (c1);

[FX_T1@0];  [FY_T1@0];

FX_T2 BY X1_t2* (l1)

X2_t2 X3_t2 (l2-l3); 

FY_T2 BY  Y1_t2*  (l4)

Y2_t2  Y3_t2 (l5-l6); 

[X1_t2 X2_t2 X3_t2] (i1-i3); 

[Y1_t2  Y2_t2  Y3_t2] (i4-i6); 

X1_t2 X2_t2 X3_t2 (u1-u3); 

Y1_t2  Y2_t2  Y3_t2 (u4-u6); 

FX_T2@1;  FY_T2@1; 

FX_T2 WITH FY_T2 (c1);

[FX_T2@0];  [FY_T2@0];

X1_t1 X2_t1 X3_t1 pwith X1_t2 X2_t2 X3_t2; 

Basic Longitudinal 
Models



Longitudinal Models. 
When different variables are 

measured at each time point. 

• Can be analyzed as cross-sectional data, with no added source 

of complexity, except in the treatment of missing data. 

• This provides a way to analyse data while taking into account 

the temporal ordering of the data, but precluding clear tests 

of the directionality of the associations. 

• Basic rule: Use all available cases, unless there is a specific 

reason not to (i.e., a key variable is completely missing, 

ethics/consents, etc.). 

Longitudinal Models. 
When the variables are 

measured at all time points. 

Provides a way to control for baseline levels of  the key variables 

of interest, and thus to model the “impact” of (or relation 

between) one variable and “changes” over time in the levels of an 

outcome variable (i.e., the influence of one variable on the part 

of the outcome that remains unexplained by baseline levels of 

that same outcome). 

i.e., effects “over and above” the stability of the outcome. 



The Classical Longitudinal Model
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But even

Time T Time T+1
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Autoregressive Cross 
Lagged Model 

Autoregressive models allow one to estimate the
stability / unstability of autoregressive parameters
between adjacent measurement points over time.

 

Y1 Y2 Y3 Y4 Y5 



Autoregressive cross-lagged models allow one to
estimate the stability / unstability of autoregressive
parameters between adjacent measurement points over
time. They model the influence of “states” on later
“states” but fail to consider stable process (traits).
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Y5 
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Each process is thus a function of:

• An intercept (average level at Time 1) +
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Each process is thus a function of:

• An intercept (average level at Time 1) +

• A product of the autoregressive parameter and the
previous time point of the variable itself +
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Each process is thus a function of:

• An intercept (average level at Time 1) +

• A product of the autoregressive parameter and the
previous time point of the variable itself +

• A product of the cross lagged parameter and the
previous time point of the other variable.

 

X1 X2 X3 X4 

Y1 Y2 Y3 Y4 

X5 

Y5 



TITLE: Non latent autoregressive cross lagged model, no constraints. 

MODEL:

! Autoregressive part

X1; 

X2 ON X1; 

X3 ON X2; 

X4 ON X3; 

X5 ON X4;

Y1; Y2 ON Y1; Y3 ON Y2; Y4 ON Y3; Y5 ON Y4;

! Cross lagged part

X2 ON Y1; X3 ON Y2; X4 ON Y3; X5 ON Y4;

Y2 ON X1; Y3 ON X2; Y4 ON X3; Y5 ON X4;

! Time-specific correlations

X2 WITH Y2; X3 WITH Y3; X4 WITH Y4; X5 WITH Y5;

Predictive Equilibrium
• Cole and Maxwell (2003) underscored the importance of

tests of predictive equilibrium, which consist of testing the

extent to which the observed relations generalize to the

various time intervals.

• A predictive system that has reached equilibrium shows

relations that can be expected to generalize – i.e. the

developmental process under study has stabilized for the

period under study.

• Without theses tests, it is impossible to determine whether

variations in results reflect random sampling variations or

meaningful developmental changes.

• A model that has reached equilibrium is more parsimonious,

and thus more stable and has more power.



Predictive Equilibrium
Equilibrium of: 

• Autoregressions

• Cross-lagged relations

• Time-specific correlations.

Cole, D. A., & Maxwell, S. E. (2003). Testing meditational models with 

longitudinal data: Questions and tips in the use of structural equation 

modeling. Journal of Abnormal Psychology, 112, 558–577.

Morin, A.J.S., Arens, A.K., Maïano, C., Ciarrochi, J., Tracey, D., Parker, P.D., & 

Craven, R.G. (In press Accepted, 12 September 2016). Reciprocal Relationships 

between Teacher Ratings of Internalizing and Externalizing Behaviors in 

Adolescents with Different Levels of Cognitive Abilities. Journal of Youth and 

Adolescence. Early view doi:10.1007/s10964-016-0574-3

MODEL:

! Autoregressive part

X1; 

X2 ON X1 (a1); X3 ON X2 (a1); X4 ON X3 (a1); X5 ON X4 (a1); 

Y1; 

Y2 ON Y1 (a2); Y3 ON Y2 (a2); Y4 ON Y3 (a2); Y5 ON Y4 (a2); 

! Cross lagged part

X2 ON Y1; X3 ON Y2; X4 ON Y3; X5 ON Y4;

Y2 ON X1; Y3 ON X2; Y4 ON X3; Y5 ON X4;

! Time-specific correlations

X2 WITH Y2; X3 WITH Y3; X4 WITH Y4; X5 WITH Y5;



MODEL:

! Autoregressive part

X1; 

X2 ON X1 (a1); X3 ON X2 (a1); X4 ON X3 (a1); X5 ON X4 (a1); 

Y1; 

Y2 ON Y1 (a2); Y3 ON Y2 (a2); Y4 ON Y3 (a2); Y5 ON Y4 (a2); 

! Cross lagged part

X2 ON Y1 (CL1);  X3 ON Y2 (CL1); X4 ON Y3 (CL1); X5 ON Y4 (CL1); 

Y2 ON X1(CL2);  Y3 ON X2 (CL2);  Y4 ON X3 (CL2);  Y5 ON X4 (CL2); 

! Time-specific correlations

X2 WITH Y2; X3 WITH Y3; X4 WITH Y4; X5 WITH Y5;

MODEL:

! Autoregressive part

X1; 

X2 ON X1 (a1); X3 ON X2 (a1); X4 ON X3 (a1); X5 ON X4 (a1); 

Y1; 

Y2 ON Y1 (a2); Y3 ON Y2 (a2); Y4 ON Y3 (a2); Y5 ON Y4 (a2); 

! Cross lagged part

X2 ON Y1 (CL1);  X3 ON Y2 (CL1); X4 ON Y3 (CL1); X5 ON Y4 (CL1); 

Y2 ON X1(CL2);  Y3 ON X2 (CL2);  Y4 ON X3 (CL2);  Y5 ON X4 (CL2); 

! Time-specific correlations

X2 WITH Y2 (C1); X3 WITH Y3 (C1); 

X4 WITH Y4 (C1); X5 WITH Y5 (C1); 



Limitations of the 
Autoregressive Cross 

Lagged Model 

(1) Models the influence of states on 

later states but fail to consider stable 

developmental processes (traits). 

State Trait Models

X1 X2 X3 X4 X5

Trait

1

1
1 1 1

1



State-Trait-Error Models?

Trait

1

1
1 1 1

1

X1 X2 X3 X4 X5

State-Trait-Error Models?

Trait

1

1
1 1 1

1

X1 X2 X3 X4 X5

In these models the trait 
factor reflects the average 
level observed over time in 
the repeated measures (i.e., 
the trait), whereas the time 
specific residual 
(disturbance) reflects the 
time-specific deviation from 
this trait (the state). 



State-Trait-Error Models?

Trait

1

1
1 1 1

1

X1 X2 X3 X4 X5

The trait factor is what is 
called a “random” effect. 

That is, each individual has 
his or her own value on this 
trait factor, and this value 
can be predicted, or used in 
prediction. 

MODEL:

! Trait Factor

Trait BY X1@1 X2@1 X3@1 X4@1 X5@1;

Trait*; [Trait*];

[X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5;

! Autoregressive part

X2 ON X1; X3 ON X2; X4 ON X3; X5 ON X4;



• Kenny, D.A., & Zautra, A. (1995). The trait-state-error model for multiwave

data. Journal of Consulting and Clinical Psychology, 63, 52-59. 

• Steyer, R., Schmitt, M., & Eid, M. (1999). Latent State-Trait theory and 

research in personality and individual differences. European Journal of 

Personality, 13, 389-408. 

• Geiser, C., Keller, B.T., & Lockhart, G. (2013). First- versus second-order 

latent growth curve models Some insights from latent state-trait theory. 

Structural Equation Modeling, 20, 479-503.

• Cole, D.A., Martin, N.C., & Steiger, J.H. (2005). Empirical and conceptual 

problems with longitudinal trait-state- models: Introducing a trait-state-

occasion model. Psychological Methods, 10, 3-20. 

• Ciesla, J.A., Cole, D.A., & Steiger, J.H. (2007). Extending the trait-state-

occasion model: How important is within-wave measurement equivalence. 

Structural Equation Modeling, 14, 77-97. 

[Random Intercept Model]

Trait

1

1
1 1 1

1

X1 X2 X3 X4 X5



Limitations of the 
Autoregressive Cross-Lagged 

and State-Trait Models 

(2) Do not explicitly model
developmental change over time.

(3) State-Trait Models neglect to
account for evolution occurring
at the Trait level.

Latent Change Models

• Difference scores (or change scores) have been around for a 

long time in applied research. 

• Change = Time 2 rating – Time 1 rating.

• But these models have come under major criticisms, due to 

the fact that change scores result in an multiplicative 

combination of measurement errors. 

• Latent changes scores solve these problems. 

McArdle, J.J. (2009). Latent Variable Modeling of Differences and 

Changes with Longitudinal Data. Annual Review of Psychology, 60, 

577-605. 



1

1

Δ

X1 X2

1

1

Δ

X1 X2

By fixing the regression of 
X2 on X1 to be exactly 1, you 
force the residual of X2 to 
correspond exactly to the 
amount of change since T1. 

By forcing the loading of X2 
on the change factor to be 
exactly 1 (as well as fixing 
the intercept and residual of 
X2 to be exactly 0), you force 
all information present in X2 
to be absorbed in the change 
factor. 



1

1

Δ

X1 X2

Without the change factor: 
(1) Other variables would 

still predict X2. With the 
change factor, they are 
forced to predict only X2-
X1. 

(2) It would impossible to 
assess the correlation 
between the initial level 
(X1) and the change 
factor (reflecting the fact 
that the rate of change 
might be more of less 
pronounced depending 
on initial levels). 

1

1

Δ

X1 X2

The change factor is random; 
i.e. it has a mean (reflecting 
the average change in the 
total sample) and a variance 
(reflecting inter-individual 
differences in rates of 
change). 
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Versus?
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X2
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Illustration
• Using the longitudinal data set, focusing on Time 1 and Time 2 

measures of loneliness and self-esteem, and starting with a model 

of strong invariance based on the referent indicator approach. 

• Autoregressive cross-lagged model: 

• Latent change model: 

LON_t1 BY Lon1_t1@1

Lon2_t1 Lon3_t1 Lon4_t1 Lon5_t1 (l2-l5);

LON_T2 BY Lon1_t2@1

Lon2_t2 Lon3_t2 Lon4_t2 Lon5_t2 (l2-l5);

[Lon1_t1@0];

[Lon2_t1 Lon3_t1 Lon4_t1 Lon5_t1] (i1-i5);

[Lon1_t2@0];

[Lon2_t2 Lon3_t2 Lon4_t2 Lon5_t2] (i1-i5);

Lon1_t1 Lon2_t1 Lon3_t1 Lon4_t1 Lon5_t1; ! Add (u1-u5) for strict invariance

Lon1_t2 Lon2_t2 Lon3_t2 Lon4_t2 Lon5_t2; ! Add (u1-u5) for strict invariance

Lon1_t1 Lon2_t1 Lon3_t1 Lon4_t1 Lon5_t1 PWITH Lon1_t2 

Lon2_t2 Lon3_t2 Lon4_t2 Lon5_t2;

The latent part of both models
Referent indicator method 



se_t1 BY se1_t1@1

se2_t1 se3_t1 se4_t1 se5_t1 (l12-l15);

se_T2 BY se1_t2@1

se2_t2 se3_t2 se4_t2 se5_t2 (l12-l15);

[se1_t1@0]; 

[se2_t1 se3_t1 se4_t1 se5_t1] (i12-i15);

[se1_t2@0];

[se2_t2 se3_t2 se4_t2 se5_t2] (i12-i15);

se1_t1 se2_t1 se3_t1 se4_t1 se5_t1; ! Add (u11-u15) for strict invariance

se1_t2 se2_t2 se3_t2 se4_t2 se5_t2; ! Add (u11-u15) for strict invariance

se1_t1 se2_t1 se3_t1 se4_t1 se5_t1 PWITH se1_t2 se2_t2 

se3_t2 se4_t2 se5_t2;

LON_t1*;

LON_T2*;

[LON_t1*];

[LON_T2*];

se_t1*;

se_T2*;

[se_t1*];

[se_T2*];

se_T2 ON se_t1 LON_t1; 

LON_T2 ON LON_t1 se_t1;

LON_t1 WITH se_t1;

LON_t2 WITH se_t2;

Autoregressive-Cross Lagged



se_T2 ON se_t1@1;

changese BY se_T2@1;

LON_T2 ON LON_t1@1;

changelon BY LON_T2@1;

changese WITH changelon se_t1 ; 

changelonWITH  LON_t1; 

se_t1 WITH LON_t1; 

changese ON LON_t1; 

changelon ON se_t1; 

Latent Change Model

[changese*] ;

[changelon*];

changese*;

changelon*;

se_T2@0;

LON_T2@0;

[se_T2@0];

[LON_T2@0];

se_T1*;

LON_T1*;

[se_T1*];

[LON_T1*];

Illustration
• Autoregressive cross-lagged model: 

χ2 = 534.445; df = 170; CFI = .935; TLI = .927; RMSEA = .038.

• Latent change model: 

χ2 = 534.445; df = 170; CFI = .935; TLI = .927; RMSEA = .038



Illustration
• Autoregressive cross-lagged model: 

χ2 = 534.445; df = 170; CFI = .935; TLI = .927; RMSEA = .038.

Self-Esteem (t1)  Loneliness (t2): β = -.045

Loneliness (t1)  Self-Esteem (t2): β = .070*

• Latent change model: 

χ2 = 534.445; df = 170; CFI = .935; TLI = .927; RMSEA = .038

Self-Esteem (t1)  ΔLoneliness (t1-t2): β = .186**

Loneliness (t1) ΔSelf-Esteem (t1-t2): β = .179**

11
ΔXX1 X2

11
ΔYY1 Y2

BUT ?

X1

Y1

X2

Y2



Parenthesis: 
Other Applications of 
Latent Change Scores 

with Cross Sectional Data

Utility
• Person-Environment fit

• Actual-Ideal Discrepancies

• Etc.

• Any domain when there is a reason to believe that 

discrepancies between one construct and another is a 

meaningful variable to consider



Latent Congruence (Cheung, 2009)

Actual-Ideal Discrepancies 

(Morin et al., 2015)



Actual-Ideal Discrepancies 

(Morin et al., 2015)

 

Actual 

Appearance 

Ideal 

Appearance 

Global Self-

Esteem 

Item 1 Item 2 Item 3 Item 4 Item 1 Item 2 Item 3 Item 4 

Item 1 Item 2 Item 3 Item 4 Item 5 

+ - 

Or Latent Discrepancy Model 

(Scalas et al., 2014) ?



Morin et al. (2015)
• Classical Actual-Ideal Discrepancy Model

χ2 = 789.21, df = 113; CFI = 0.94; TLI = 0.93; RMSEA = 0.06

Ideal  PSC: b = -0.079; p ≤ .01

Ideal  GSE: b = -0.006, ns

• Latent Discrepancy Model

χ2 = 789.21, df = 113; CFI = 0.94; TLI = 0.93; RMSEA = 0.06

Discrepancy  PSC: b = -0.079; p ≤ .01

Discrepancy  GSE: b = -0.006, ns

Limitations of the Latent 
Change Models

(4) Are unable to depict the
shape of the growth trajectory
over time. They do model
“change”, but not the process of
change



Individual trajectories

Two time points



Two time points

Three Time points



Three Time points

Three Time points



Latent curve models allow one to synthesize
individual trajectories with few latent
parameters through a restricted factor model.

An average 
trajectory with 

a random 
intercept and 

slope is 
estimated

 

Y1 Y2 Y3 Y4 

αy βy 

1 
1 1 

1 
1 2 3 
0 

Y5 

1 
4 

Latent curve models allow one to synthesize
individual trajectories with few latent
parameters through a restricted factor model.

Random: Each 
individual has its 
own trajectory 
(intercept and 

slope variance).
Model-based 

time-structured 
(trait) variability



Latent curve models allow one to synthesize
individual trajectories with few latent
parameters through a restricted factor model.

Residuals:
Few persons 

follow a perfectly 
linear  

(curvilinear, etc.) 
trajectory.

Residual state-
like variability. 
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Y1 Y2 Y3 Y4 

αy βy 

1 
1 1 

1 
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0 

Y5 

1 
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Time codes (λ): Reflects the 
passage of time. 

Linear: 0-1-2-3-4-5 (or 
some other reflecting the 
true passage of time, e.g. 
0-1-3-4-6).

Quadratic: Addition of a 
second slope factor with 
squared time codes (0-1-4-9-
16-25).

Piecewise: Two slopes with 
loadings reflecting the 
transition point: 
• 0-1-2-3-3-3-3
• 0-0-0-0-1-2-3

Multibase: Free loadings 
reflecting the % of change 
between 0 and 1. 
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αy βy 
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Linear LCM

Requires 3 time points

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝒊𝒚 = 𝝁𝜷 + 𝜻𝜷𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝒊𝒚𝝀𝒕 + 𝜺𝒚𝒊𝒕

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝒊𝒚𝝀𝒕 + 𝜺𝒚𝒊𝒕

Time codes (λ): Reflects the 
passage of time. 

Linear: 0-1-2-3-4-5 (or some 
other reflecting the true 
passage of time, e.g. 0-1-3-4-
6).

Time specific residuals
Slope factor

Intercept factor



𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝒊𝒚 = 𝝁𝜷 + 𝜻𝜷𝒚𝒊

Average intercept and slope

observed in the total sample

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝒊𝒚 = 𝝁𝜷 + 𝜻𝜷𝒚𝒊

Disturbances (zeta) 
reflecting the variability of 
the estimated intercepts and 
slopes across cases within 
latent trajectory classes. 
These disturbances have a 
mean of zero and a 
variance/covariance matrix 
represented by Phi: 

𝜱𝒚 =
𝝍𝜶𝜶𝒚

𝝍𝜶𝜷𝒚 𝝍𝜷𝜷𝒚



Quadratic LCM

Requires 4 time points

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝟏𝒊𝒚 = 𝝁𝜷𝟏 + 𝜻𝜷𝟏𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝟏𝒊𝒚𝝀𝒕 + 𝜷𝟐𝒊𝒚𝝀𝒕
𝟐 + 𝜺𝒚𝒊𝒕

𝜷𝟐𝒊𝒚 = 𝝁𝜷𝟐 + 𝜻𝜷𝟐𝒚𝒊

Time codes (λ): Reflects the 
passage of time. 

Linear: 0-1-2-3-4-5 (or some 
other reflecting the true 
passage of time, e.g. 0-1-3-4-
6).

Quadratic: Addition 
of a second slope 
factor with squared 
time codes (0-1-4-9-
16-25).

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝟏𝒊𝒚𝝀𝒕 + 𝜷𝟐𝒊𝒚𝝀𝒕
𝟐 + 𝜺𝒚𝒊𝒕



Disturbances (zeta) 
reflecting the variability of 
the estimated intercepts and 
slopes across cases within 
latent trajectory classes. 
These disturbances have a 
mean of zero and a 
variance/covariance matrix 
represented by Phi: 

𝜱𝒚 =

𝝍𝜶𝜶𝒚

𝝍𝜶𝜷𝟏𝒚 𝝍𝜷𝟏𝜷𝟏𝒚

𝝍𝜶𝜷𝟐𝒚 𝝍𝜷𝟏𝜷𝟐𝒚 𝝍𝜷𝟐𝜷𝟐𝒚

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝟏𝒊𝒚 = 𝝁𝜷𝟏 + 𝜻𝜷𝟏𝒚𝒊

𝜷𝟐𝒊𝒚 = 𝝁𝜷𝟐 + 𝜻𝜷𝟐𝒚𝒊

Time
• In any applications of LCM time must be a meaningful variable:  Age, 

Grade, Tenure, etc. 

• Simply having a sample of participants of various age/grade/tenure 

level measured repeatedly over time is not sufficient. One needs to 

expect that time plays a meaningful role in order to support the 

needs to rely on analyses of trajectories. 

• The argument that LCM are the best way to asses change over time 

is fallacious, unless time is meaningful. 

• The position of the intercept should never be arbitrary, given that it 

will have a great impact on the results. 

• The time codes are also not arbitrary, and need to reflect the 

passage of time. 
Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves. 

Psychological Methods, 5, 23–43.

Biesanz, J.C., Deeb-Soosa, N., Papadakis, A.A., Bollen, K.A., & Curran, P.J. (2004). The role of  

coding time in estimating and interpreting growth curve models. Psychological Methods, 9, 30–
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Y1 Y2 Y3 Y4 

αy βy 
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1 2 3 
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Reflects the 
average change 

occurring per unit 
of time over the 

full study period, 
not the specific 

change occurring 
at each time point. 

 

Y1 Y2 Y3 Y4 

αy βy 

1 
1 1 

1 
1 2 3 
0 

Y5 

1 
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The intercept is 
always located at 

the time point 
defined by a 

loading of 0 on the 
slope factor. 
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For example, if Time 1, 
2, 3 are taken 6 months 
apart, and time 4 one 
year after time 3, and 
time 5 two years after 
time 4, then the time 

code should be: 
0 / .5 / 1/ 2 / 4 

If time 1 reflects 
background control 
measures and the 

intercept should really 
be located at Time 2: 
-.5 / 0 / .5 / 1.5 / 3.5

Biesanz et al., (2004)







Piecewise LCM

Requires 5 time points, 
with at least 2 before and 
after the turning point. 

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊

𝜷𝟏𝒊𝒚 = 𝝁𝜷𝟏 + 𝜻𝜷𝟏𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝟏𝒊𝒚𝝀𝟏𝒕 + 𝜷𝟐𝒊𝒚𝝀𝟐𝒕 + 𝜺𝒚𝒊𝒕

𝜷𝟐𝒊𝒚 = 𝝁𝜷𝟐 + 𝜻𝜷𝟐𝒚𝒊

𝜱𝒚 =

𝝍𝜶𝜶𝒚

𝝍𝜶𝜷𝟏𝒚 𝝍𝜷𝟏𝜷𝟏𝒚

𝝍𝜶𝜷𝟐𝒚 𝝍𝜷𝟏𝜷𝟐𝒚 𝝍𝜷𝟐𝜷𝟐𝒚



Time codes (λ): Reflects the 
passage of time. 

Linear: 0-1-2-3-4-5 (or some other 
reflecting the true passage of time, 
e.g. 0-1-3-4-6).
Quadratic: Addition of a second 
slope factor with squared time 
codes (0-1-4-9-16-25).

Piecewise: Two slopes 
with loadings reflecting 
the transition point: 
• 0-1-2-3-3-3-3
• 0-0-0-0-1-2-3

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝟏𝒊𝒚𝝀𝟏𝒕 + 𝜷𝟐𝒊𝒚𝝀𝟐𝒕 + 𝜺𝒚𝒊𝒕



Piecewise time codes
• Approach 1: 

0-1-2-3-3-3-3: The first slope reflects change up to the 4th

measurement occasion. Linear growth. 

0-0-0-0-1-2-3: The second slope reflect change occurring after 

the 4th measurement occasion. Linear growth. 

• Approach 2:  Added Rate model

0-1-2-3-4-5-6: The first slope reflects a linear rate of change 

occurring throughout the study. Linear Growth

0-0-0-0-1-2-3: The second slope reflect the difference in the 

rate of change occurring between the two periods (before and 

after after the 4th measurement occasion). Additive growth. 

Turning Points: 
• Piecewise modeling is useful when the turning point is known 

a priori (e.g., intervention, change, retirement, transition, 

puberty). 

• The turning point needs to be common to all participants 

(not random). 

• When the turning point is not known a priori but suspected 

to exist (e.g., imagine you want to know how long, on average, 

after retirement it takes for people to change their life 

rhythm), then it is possible to estimate a fully linear trajectory 

and to examine the modification indices associated with the 

loadings on the slope factor to locate the turning point (see 

Kwok et al., 2010).

• Convergence problems are associated with having only 2 

measurement occasions before, but not after, the turning 

point (Diallo et al., 2015)



Latent Basis / Multibase
Models

• So far, we have seen LCM in which all factor loadings 

representing the time codes are fixed to specific values. 

• For identification purposes, only two of them need to be fixed 

to the pre-specified values of 0 and, typically, 1. 

• As always, zero serves to locate the intercept. 

• The slope factor will then reflect the total amount of change 

occurring between the 0 and 1 time points. 
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β

1
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α

1

𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊 𝜷𝒊𝒚 = 𝝁𝜷 + 𝜻𝜷𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝒊𝒚𝝀𝒕 + 𝜺𝒚𝒊𝒕



Freely estimated time codes
0 * * * * 1:  

Here the slope reflects the total amount of change occurring 

between the first and last time point (over the course of the 

study). 

The freely estimated unstandardized loadings reflect the 

proportion of this change that has occurred at each time point. 

e.g., 0 .5 .6 .7 .8 1: 50% of the change has occurred by Time 2, 

60% by Time 3, etc.

Imagine a slope of 100 and an intercept of 0. 

e.g., 0  .5 1.5  .9 .8 1: Non-linear trajectory. 50% of the change 

has occurred by Time 2 (50), 150% by Time 3 (150), then levels 

go down by Time 4 (80) and 5 (90), and then up again to 100 by 

the end. 

0 1 * * * *: 

Freely estimated time codes
0 1* * * * :  

Here the slope reflects the total amount of change occurring 

between the first and second time point. 

The freely estimated unstandardized loadings reflect how much 

change (in relation to this initial change level) occurs at each 

subsequent time point. 

Imagine a slope of 10 and an intercept of 0. 

e.g., 0 1 2 2.5. 2 3 : By time 3, twice the amount of change that 

has occurred by Time 1 has occurred (20), then 25, then down to 

20, then 30. 



Limitations of multibase models

• As in all LCM seen so far, the intercept and slope(s) factors 

are random parameters, free to differ across participants 

(each participant has his or her own linear, quadratic, or 

piecewise trajectory). 

• In multibase models: 

o The variance of the intercept factor reflects inter-individual 

variations in initial levels. 

o The variance of the slope factor reflects inter-individual 

variations in the total amount of change. 

o The loadings are the same for everyone: Each participant’s 

trajectories have the exact same shape. 



Example: Linear
Five measurement points, observed (non latent) equally repeated 

measures (X1 to X5)

Model:

i s |  X1@0 X2@1 X3@2 X4@3 X5@4 ;

X1 X2 X3 X4 X5; 

The | symbol is a shortcut to define a latent curve model. 

The I S labels can be changed as need. With two of them, a linear 

LCM will be estimated. 

Without the shortcut, the full input would be: 

Model: 

i BY X1@1 X2@1 X3@1 X4@1 X5@1;

s BY X1@0 X2@1 X3@2 X4@3 X5@4 ;

i s ;  

i with s; 

[i s];

[X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 



Example: Quadratic
Model:

i s q |  X1@0 X2@1 X3@2  X4@3 X5@4 ;

X1 X2 X3 X4 X5; 

OR: 

Model: 

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

q BY X1@0 X2@1 X3@4 X4@9 X5@16 ;

i s q;  i with s q; s with q; 

[i s q];

[X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

Example: Piecewise
Model: 

i s1 |  X1@0 X2@1 X3@2 X4@2 X5@2 ;

i s2 |  X1@0 X2@0 X3@0 X4@1 X5@2 ;

X1 X2 X3 X4 X5; 

OR: 

Model: 

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s1 BY X1@0 X2@1 X3@2 X4@2 X5@2 ;

s2 BY X1@0 X2@0 X3@0 X4@1 X5@2 ;

i s1 s2;  i with s1 s2; s1 with s2; 

[i s1 s2]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 



MODEL:

i s |  X1@0 X2* X3* X4* X5@1 ;

X1 X2 X3 X4 X5; 

Or

i s |  X1@0 X2@1 X3* X4* X5 * ;

X1 X2 X3 X4 X5; 

Or

Model: 

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3* X4* X5* ;

i s ;  i with s; 

[i s];[X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

Example: Multibase

Other non-linear 
trajectories

• Complex. 

• Not often useful.

• Often include non-random parameters (that do not vary 

across individuals, and yet should). 

• Exponential, Logistic, negative exponential, rectangular 

hyperbolic, Gompertz.

• See: 



Exponential: 
Accelerating rate of change

Negative Exponential / 
Rectangular Hyperbolic: 

* Quick growth reaching a ceiling 
* Rate of change that increases as one 

approaches the asymptote



Logistic/ Gompertz: 
* Difference: The logistic is symmetric, 

the Gompertz is not

See:
• Wu, W., Selig, J.P., & Little, T.D. (2013). Longitudinal Data analysis. In T.D. 

Little (Ed.) The Oxford Handbook of Quantitative Methods in Psychology, 

Volume 2 (pp. 387-410). New York: Oxford University Press. 

• Hancock, G.R., Harring, J.R., & Lawrence, F.R. (2013). Using latent growht

modelign to evaluate longitudinal change. In G. R. Hancock & R. O. Mueller 

(Eds), Structural Equation Modeling: A Second Course, 2nd edition (pp. 309-342). 

Greenwich, CO: IAP. 

• Ram, N., & Grimm, K. (2007). Using simple and complex growth models to 

articulate developmental change: Matching theory to method. International 

Journal of Behavioral Development, 31, 303-316.  

• Grimm, K.J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. 

Structural Equation Modeling, 16, 676-701. 

• Preacher, K.J., & Hancock, G.R. (2015). Meaningful aspects of change as 

novel random coefficients: A general method for reparametrizing 

longitudinal models. Psychological Methods, 20, 84-101. 



Conditional Models
• Time Invariant Covariates

Incorporation of predictors that are either only measured at the 

beginning of the study, or outcomes that are only measured at 

the end of the study, or of predictors/outcomes that do not 

change over time (sex, etc.). 

Typically, these are only allowed to predict, or be predicted, by 

the intercept and slope(s) factors. 

• Time Varying Covariates

Incorporation of predictors/outcomes that differ across time 

points. 

Typically, these are only allowed to predict, or be predicted, but 

the time-varying observations. The invariance over time of these 

predictions can be tested. 

• Multiple Processes

Incorporation of more than one LCM in the same model. 
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𝜷𝒊𝒚 = 𝝁𝜷 + 𝜸𝜷𝟏𝒙𝟏𝒊 + 𝜻𝜷𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝒊𝒚𝝀𝒕 + 𝜺𝒚𝒊𝒕
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α

1

O
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𝑶𝒊 = 𝜶𝑶 + 𝜷𝑶𝜶𝒊𝒚 +𝜷𝑶𝜷𝒊𝒚𝜺𝒐𝒊

Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

i s ON P1 P2; 

Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

O1 O2 ON i s; 
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𝜶𝒊𝒚 = 𝝁𝜶 + 𝜻𝜶𝒚𝒊 𝜷𝒊𝒚 = 𝝁𝜷 + 𝜻𝜷𝒚𝒊

𝒀𝒊𝒕 = 𝜶𝒊𝒚 + 𝜷𝒊𝒚𝝀𝒕 + 𝜸𝒕𝑷𝒊𝒕 + 𝜺𝒚𝒊𝒕

𝛾𝑃𝑖

Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

X1 ON P1;

X2 ON P2; 

X3 ON P3; 

X4 ON P4;

X5 ON P5; 

X1-X5 PON P1-P5;



Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

X1 ON P1 (a);

X2 ON P2 (a);  

X3 ON P3 (a); 

X4 ON P4 (a);

X5 ON P5 (a); 
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Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

O1 ON X1;

O2 ON X2;  

O3 ON X3; 

O4 ON X4; 

O5 ON X5; 

O1-O5 PON X1-X5;

Model:

i BY X1@1 X2@1 X3@1  X4@1 X5@1;

s BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

i s ;  i with s; 

[i s]; [X1@0 X2@0 X3@0 X4@0 X5@0];

X1 X2 X3 X4 X5; 

O1 ON X1 (a);

O2 ON X2 (a)  

O3 ON X3 (a); 

O4 ON X4 (a); 

O5 ON X5 (a); 
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Model:

ix BY X1@1 X2@1 X3@1  X4@1 X5@1;

sx BY X1@0 X2@1 X3@2  X4@3 X5@4 ;

iy BY Y1@1 Y2@1 Y3@1  Y4@1 Y5@1;

sy BY Y1@0 Y2@1 Y3@2  Y4@3 Y5@4 ;

ix sx iy sy ; 

[ix sx iy sy]; 

ix with sx; iy with sy; 

ix with iy; sx with sy;

[X1@0 X2@0 X3@0 X4@0 X5@0];

[Y1@0 Y2@0 Y3@0 Y4@0 Y5@0];

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5; 

sx ON iy;

sy ON ix; 



Thank you!


