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SECTION 1.
LIMITATIONS OF HIGHER-ORDER MODELS

The most frequently used approach to study the structure of hierarchically-ordered constructs
relies on higher-order models, in which indicators are used to define a series of first-order factors,
themselves used to estimate one (or more) second-order factor(s). Although never mentioned explicitly,
first-order factors are always specified as orthogonal (i.e., uncorrelated with one another) in a higher-
order model. Despite their intuitive appeal, higher-order models present two critical limitations.

First, in a higher-order model, the relation between any indicator and the second-order factor is
indirect, and reflected by the product of the indicator’s loading on the first-order factor (path a) and the
loading of the first-order factor on the second-order factor (path b). Similarly, the relation between each
indicator and the unique part of the first-order factor (i.e., unexplained by the second-order factor) is
also an indirect effect, reflected by the product of the indicator’s first-order factor loadings (path a) and
the link between the first-order factor and its disturbance (path ¢). Because paths b and ¢ are constant
for all indicators of a single first-order factor, the ratio of variance explained by the second-order factor
relative to that explained by the first-order factor is a constant for all indicators associated with a specific
first-order factor (a*b/a*c can be reduced to the constant b/c). Even though this implicit proportionality
constraint may hold in some rare circumstances and help to introduce parsimony, it is unlikely to be
supported in many practical applications (Morin et al., 2016a; Reise, 2012) or to make sense logically
or theoretically (Gignac, 2016).

Second, in higher-order models, the first-order factors reflect a combination of the variance
explained by the second-order factor and of the variance uniquely explained by the first-order factor.
To consider this second component on its own, one needs to consider the disturbance of the first-order
factor, rather than the first-order factor itself. Because of this dual nature of the first-order factors, the
joint inclusion of the first- and second-order factors in subsequent analyses creates a logical redundancy
likely to result in flawed parameter estimates (Morin et al., 2016b, 2017).

As a result, higher-order models should only be used when they are clearly supported by theory
or research. Even then, they should be contrasted with more flexible bifactor models before making a
final decision.
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SECTION 2.
BIFACTOR MODELS, ORTHOGONALITY, VANISHING S-FACTORS, AND THE
BIFACTOR S-1 FICTION

Over the years, various misconceptions have been vehiculated relative to bifactor models and are
thus directly relevant to bifactor-ESEM models. These misconceptions are mainly related to the
orthogonality assumption of bifactor models, relative to the need to estimate the factor correlations
between the method factors in CTCM models, and to the mathematical possibility of relying on oblique
forms of “bifactor” rotations (Jenrich & Bentler, 2011, 2012). Attempts to lump together all forms of
models resulting in the disaggregation of true score variance into two components (global-specific vs
trait-method) for the sake of simplicity has further contributed to muddling the relatively clear
distinctions between these two types of models. Statistically, both types of models assume that the G-
factor (in bifactor models) or the trait factor (in CTCM models) will be uncorrelated with the S-factors
(in bifactor models) or the method factors (in CTCM models). The difference lies in the fact that bifactor
models also set the S-factors to be uncorrelated with one another, while CTCM models allow the method
factors to be correlated with one another. This statistical difference entails more important theoretical
differences.

Substantively, bifactor models disaggregate multidimensional ratings into two distinct sets of
theoretically meaningful constructs. The G-factor reflects the variance shared among all indicators, thus
reflecting participants’ global scores across all dimensions of the constructs (i.e., their global
intelligence, self-concept, or motivation). The S-factors indicate the variance shared among a subset of
indicators forming a subscale left unexplained by the G-factor. They reflect the specificity, or unique
nature, of each subscale net of what it shares with the other subscales. Contrary to factors estimated in
a non-bifactor model, which reflect the subscale-relevant variance in its entirety, the S-factors reflect
the extent to which participants’ scores on each dimension deviate from their scores across all
dimensions (i.e., on the G-factor). These S-factors remain theoretically meaningful in their own right,
showing the extent to which participants are uniquely characterized by each specific dimension (e.g.,
one might have a high level of 1Q, and yet display a level of performance on memory tasks that is higher
than expected given their global 1Q). In contrast, CTCM models estimate meaningful trait factors from
a series of indicators, while controlling for different sets of methodological artefacts (such as informant
effects) which are not theoretically relevant themselves.

Confusions between both types of models have always been present in research, as illustrated by
studies including correlated “specifics” to study meaningful global and specific constructs (e.g.,
Brunner et al., 2009; 2010). However, this issue has recently been further muddled by the suggestion to
rely on bifactors (S-1) models (removing one of the S-factors, but adding correlations among the
remaining S-factors), similar to CTC(M-1) models (e.g., Burns et al., 2020; Eid et al., 2017). This
proposition has emerged from the observation of bifactor results erroneously described as “anomalous”
(e.g., Eidetal., 2017; Markon, 2019). Three categories of so-called “anomalous” results were identified:
(a) “vanishing” S-factors (i.e., models in which one of the S-factor is weakly defined by its indicators);
(b) “irregular” factor loading patterns that do not match one’s expectations or the loadings observed in
non-bifactor correlated-factors models; (c) the observation of correlations between the specific factors.

Clearly, issue ¢ above can only stem from researchers’ reliance on improper bifactor models in
which the S-factors were allowed to be correlated in the first place, which should not have happened.
Likewise, it is hard to see how issue b can be a problem, at least statistically speaking. Although data
frequently fails to match hypotheses, why would one expect S-factor loadings to be identical to their
correlated-factors counterpart? When moving from a correlated-factors model to a bifactor model, one
explicitly seeks to change the meaning of the S-factors as reflecting the unique nature of the subscale
disaggregated from the global component. In this context, we should expect some indicators to retain
more (showing stronger S-factor loadings) or less (showing stronger G-factor loadings and weak S-
factor loadings) specificity. Otherwise, we should not pursue a bifactor representation of the data.
Lacking prior evidence, it is typically difficult to develop clear a priori hypotheses in this regard.
However, moving from one type of model to the other, it seems logical to expect some differences.

For the same reasons, the observation of vanishing S-factors (issue a) is also to be expected in
bifactor research, and only shows that limited specificity remains at the level of the S-factor once the
G-factor has been taken into account. A “vanishing” S-factor indicates that the items associated with
this specific dimension mainly contribute to define the G-factor and retain very little specificity beyond
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that. Consider the example of the satisfaction of the needs for competence, relatedness, and autonomy,
which have been repeatedly shown to possess a bifactor structure where the global factor reflects global
levels of need satisfaction across all needs, and the S-factors reflect deviations in the satisfaction of
each specific need relative to that global level. This area of research typically results in the identification
of one “vanishing” S-factor, so that this phenomenon can now be expected a priori. However, this
“vanishing” S-factor depends on the nature of the sample. Thus, among generic populations of workers
and university students, the need for autonomy tends to present a strong alignment with global levels of
need satisfaction (resulting in a vanishing S-factor) (Gillet et al., 2019; 2020; Sanchez-Oliva et al.,
2017), whereas the same happens to the need for relatedness among younger populations of students
(Garn et al., 2019) and nurses (Huyghebaert-Zouaghi et al., 2021).

To explain these “anomalies,” Eid et al. (2017) transposed stochastic measurement theory, which
assumes that the indicators of a reflective construct should be conceptualized as a random sample of all
possible indicators of that construct (aligned with CTT), to suggest that the various subdomains
(represented by the S-factors) incorporated in bifactor models should be seen as a random sample of all
possible subdomains of that construct. To address the lack of subdomain “interchangeability,” they
propose removing one of the S-factors, allowing the remaining S-factors to correlate, thereby
“anchoring” the meaning of the G-factor into the omitted domain, as in the CTC(M-1) domain.

Unfortunately, although this assumption matches CTCM models in which the various “methods”
or “raters” are seen as a random sample of all possible “methods” or “raters,” it is flawed in relation to
bifactor models. In a bifactor model, the whole set of indicators are assumed to be a random sample of
all possible indicators of the G-factor. Likewise, each subset of indicators is assumed to be a random
sample of all possible indicators of each S-factor. However, this assumption does not extend to the
domains, dimensions, or S-factors covered in the measure. First, in a bifactor model, all factors are
directly estimated at the indicator level (contrary to the higher-order model in which they are estimated
at the factor level, and for which this assumption of “interchangeability” might be more relevant).
Second, in a bifactor model, one typically assumes that all relevant subdomains are covered, at least
from the perspective of the measure used. For instance, in the need satisfaction example used before,
Self-Determination Theory (Ryan & Deci, 2017) assumes that these three needs form a complete set.
Arguably, one will not necessarily be able to explicitly focus on all possible subdomains. However,
even then, bifactor applications will usually assume that the main domains are reasonably covered to
be able to interpret the G-factor as reflecting scores obtained across all domains. As a result, in a bifactor
model, the G-factor does not need an anchor to be interpretable.

Furthermore, due to the orthogonality of a bifactor model, the definition of the G-factor and of the
remaining S-factors remains unchanged following the removal of one of the S-factor. More precisely,
in bifactor models, the clean partitioning of the variance explained by the global and specific constructs
is made possible by the orthogonality of the factors, as this orthogonality forces the covariance shared
among all items to be fully absorbed into the G-factor (resulting in a clear definition of the G-factor as
reflecting the variance shared among all of its subdomains), while the S-factors represent the covariance
shared among a subset of items but not with the other subsets. As such, taking out one of the S-factors
(such as a “vanishing” S-factor) will not change the meaning of the G-factor as reflecting what is shared
among all indicators. This stability has been demonstrated by Arens and Morin (2017) and Morin et al.
(2020).

In contrast, CTCM models “force” construct-relevant variance to be absorbed by the trait factor
and rely on the method factors to control for inter-rater or inter-method differences. However, by
allowing these method factors to be correlated, the CTCM adds a third source of covariance, which
makes it difficult to properly interpret the trait factor (and to converge). The trait factor should be used
to estimate what is shared among all indicators, but how to achieve this when all items are already
allowed to share something with all other items (by allowing the method factors to correlate) beyond
the trait factor is unclear. The CTC(M-1) model provides a solution. By anchoring the definition of the
trait factor in one of the “methods,” this model clarifies the meaning of the trait (i.e., reflecting the
ratings obtained using the anchoring method or informant, and what they share with the other types of
methods or informants) and method (i.e., reflecting the extent to which the ratings provided by each
type of informant or method deviate from the ratings provided by the anchoring method or informant)
factors. This phenomenon is related to the non-orthogonality of the method factors, which “push” into
the trait factor the information that is shared among all indicators as well as the information that is
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shared among the indicators of the referent method. Using real data, Morin et al. (2020) demonstrated

this key difference, showing that the anchoring effect only occurred when correlations were included

among the S-factors/method factors, but not in the absence of these correlations. Importantly, moving
from an orthogonal bifactor model to a so-called “bifactor (S-1)” model in which the S-factors are
allowed to correlate is likely to change the meaning of the G-factor in a way that no longer makes

theoretical sense. Why would we want to “anchor” IQ scores ratings into a specific subtest (e.g.,

memory)?

Further Demonstration
We further illustrate these differences using three data sets simulated according to a (1) bifactor

CFA model (relying on parameter estimates corresponding to that of Data 2 but without the cross-

loadings), a (2) CTCM model (relying on the same parameter estimates) in which the method factors

share correlation of .35, and (3) another CTCM model relying on the same parameter estimates but
correlations of .50 among the method factors. We also simulated three additional data sets almost

identical to the previous ones, but in which the S-factor or method-factor to be removed was a

“vanishing” one (with loadings varying from .100 to .200). The results (presented in Tables S1 and S2

of these Conceptual Supplements) are pretty straightforward and show that: (a) no “anchoring” effects

occur when the omitted S-factor or method factor is a “vanishing” factor; (b) for data simulated
according to models including three strong S-factors or method factors, the removal of one of those

factors results in a substantial decrease in model fit; (¢) when the data is simulated according to a

bifactor model with three strong S-factors, taking out one S-factors results in some minor changes in

the size of the factor loadings that do not modify the meaning of the factors, whereas these changes are
more pronounced when the remaining S-factors are allowed to be correlated; (d) for data simulated
according to a CTCM model with three strong method factors, the removal of one method factor results
in a clear “anchoring” effect but only when the remaining method factors are allowed to be correlated,
not when they are orthogonal; (e) removing a “vanishing” factor does not modify the remaining factor
loadings in any way. These results thus support the previous discussion.
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Table S1.

Additional Simulated Data Results: Model fit indices

Description 22 (df) CFl TLI RMSEA 90% CI
Data Simulated: Bifactor Model, Strong S-
Factors
Bifactor 197.849 (42)* .998 .997 .019 .017; .022
Bifactor (S-1) 2667.066 (46)* .970 .957 .075 .073; .078
CTCM 61.933(39) 1.0001.000 .008 .004; .011
CTC(M-1) 1986.665 (45)* .978 .967 .066 .063; .068
Data Simulated: Bifactor Model, One Vanishing S-Factor
Bifactor 58.880 (42) 1.0001.000 .006 .001; .010
Bifactor (S-1) 93.423 (46)* .999 .999 .010 .007; .013
CTCM 72.118 (39)* 1.000 .999 .009 .006; .013
CTC(M-1) 91.029 (45)* .999 .999 .010 .007; .013
Data Simulated: CTCM, r = .35, Strong Method Factors
Bifactor 444755 (42)* 995 .993 .031 .028; .034
Bifactor (S-1) 2525.084 (46)* .972 .960 .073 .071; .076
CTCM 64.333 (39)* 1.0001.000 .008 .004; .011
CTC(M-1) 1806.940 (45)* .980 .971 .063 .060; .065
Data Simulated: CTCM, r = .50, Strong Method Factors
Bifactor 770.356 (42)* .992 .987 .042 .039; .044
Bifactor (S-1) 2413.753 (46)* .974 .963 .072 .069; .074
CTCM 66.414 (39)* 1.000 .999 .008 .005; .012
CTC(M-1) 1711.283 (45)* .982 .973 .061 .058; .063
Data Simulated: CTCM, r = .35, One Vanishing Method Factor
Bifactor 301.042 (42)* .996 .994 .025 .022; .028
Bifactor (S-1) 390.280 (46)* .995 .993 .027 .025; .030
CTCM 61.173(39) 1.000 .999 .008 .004; .011
CTC(M-1) 77.518 (45)* 1.000 .999 .009 .005; .012
Data Simulated: CTCM, r = .5, One Vanishing Method Factor
Bifactor 584.291 (42)* .992 .988 .036 .033; .039
Bifactor (S-1) 748.543 (46)* .990 .986 .039 .037; .042
CTCM 56.747 (39) 1.0001.000 .007 .002; .010
CTC(M-1) 93.130 (45)* .999 .999 .010 .007; .013

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait

correlated methods model; CTC(M-1): CTCM model minus one method factor; S-factor: Specific

factor from a bifactor model; 2 Robust chi-square test of exact fit; df: Degrees of freedom; CFI:
Comparative fit index; TLI: Tucker-Lewis index; RMSEA: Root mean square error of approximation;
90% CI: 90% confidence interval.
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Table S2.
Additional Simulated Data Results: Parameter estimates (1/3)
Bifactor Bifactor (S-1) CTCM CTC(M-1)
Indicators GF A SF A GF A SF A AGF A ASF A TF A MF A TF A MF A ATF A AMF )\
Data Simulated: Bifactor Model, Strong S-Factors
X1 719 .348 618 468 -.101 120 694 403 .603 495 -.091 .092
X2 535 469 473 530 -.062 061 494 511 459 545 -.035 .034
X3 442 568 393 596 -.049 .028 390 .606 379 .605 -011 -.001
X4 647 652 573 721 -.074 .069 .588 .706 556 727 -.032 021
Y1 634 453 544 .558 -.090 105 598 499 531 571 -.067 072
Y2 .820 .345 699 521 -121 176 .806 393 684 541 -122 148
Y3 563 625 491 .658 -.072 .033 502 .687 478 .665 -.024 -.022
Y4 747 546 641 677 -.106 131 .706 593 625 .689 -.081 .096
Z1 571 622 791 220 504 .686 797 293
Z2 .626 458 172 146 584 .509 774 190
Z3 749 546 915 .166 .699 .606 922 223
Z4 816 340 .881 .065 792 403 876 .084
Data Simulated: Bifactor Model, One Vanishing S-Factor
X1 695 401 .689 408 -.006 .007 .696 .398 687 411 -.009 013
X2 496 510 493 513 -.003 .003 499 507 491 515 -.008 .008
X3 390 .606 .387 .608 -.003 .002 .396 .602 .385 .609 -.011 .007
X4 .589 .705 584 .709 -.005 .004 594 701 582 711 -.012 .010
Y1 595 504 587 513 -.008 .009 614 480 .585 515 -.029 .035
Y2 .800 403 791 418 -.009 .015 814 373 789 421 -.025 .048
Y3 496 691 489 .693 -.007 .002 523 670 487 .695 -.036 .025
Y4 .700 .602 691 .613 -.009 011 722 575 .689 615 -.033 .040
Z1 517 .045 520 .003 514 .062 520 .006
Z2 586 148 .600 014 589 153 .600 011
Z3 692 273 711 .019 .700 187 712 012
Z4 795 110 .806 011 794 132 .807 013

Note. Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus one
method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF: Trait
factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; A: Factor loading; A: Change between the basic model (bifactor or
CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.
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Table S2. (cont.)
Additional Simulated Data Results: Parameter estimates (2/3)

Bifactor Bifactor (S-1) CTCM CTC(M-1)
Indicators GF A SF A GF A SF A AGF A\ ASF A TF A MF A TF A MF A ATF A AMF A
Data Simulated: CTCM, r = .35, Strong Method Factors
X1 736 .300 .653 408 -.083 .108 .693 406 .640 442 -.053 .036
X2 567 429 517 481 -.050 .052 493 512 .505 .502 012 -.010
X3 486 .530 452 .556 -.034 .026 .389 .606 435 .566 .046 -.040
X4 .695 .602 .635 .659 -.060 .057 .585 709 .620 673 .035 -.036
Y1 .663 409 .594 .508 -.069 .099 .596 501 577 523 -.019 .022
Y2 .832 .300 .738 464 -.094 164 .806 .394 721 487 -.085 .093
Y3 .613 563 552 .593 -.061 .030 498 .690 542 .610 .044 -.080
Y4 781 .500 .700 .622 -.081 122 704 .594 .680 .636 -.024 .042
Z1 .621 561 .786 .165 501 .690 .798 .297
Z2 .655 414 .768 13 583 .509 173 190
Z3 784 498 907 123 .697 .607 922 .225
Z4 .829 .293 871 .042 792 404 .876 .084
Data Simulated: CTCM, r = .50, Strong Method Factors
X1 753 244 .694 .340 -.059 .096 691 409 .678 .380 -.013 -.029
X2 .600 .381 .568 A27 -.032 .046 491 513 .552 451 .061 -.062
X3 532 482 .508 501 -.024 .019 .388 .605 491 517 103 -.088
X4 744 541 .706 .593 -.038 .052 583 712 .685 .608 102 -.104
Y1 .691 357 .638 443 -.053 .086 594 .503 .624 466 .030 -.037
Y2 .841 .252 771 .394 -.070 142 .804 .396 .756 423 -.048 .027
Y3 .665 486 .624 523 -.041 .037 494 .695 .607 543 13 -.152
Y4 .815 447 754 551 -.061 .104 .703 .594 736 571 .033 -.023
Z1 .673 .486 .795 122 498 .695 .801 .303
Z2 .684 .363 .769 .085 .583 .508 773 .190
Z3 .819 443 914 .095 .696 .607 922 .226
Z4 .840 242 877 .037 791 406 .875 .084

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus
one method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF:
Trait factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; A: Factor loading; A: Change between the basic model (bifactor or
CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.



Conceptual Supplements for Exploratory Structural Equation Modeling C9

Table S2. (cont.)
Additional Simulated Data Results: Parameter estimates (3/3)

Bifactor Bifactor (S-1) CTCM CTC(M-1)
Indicators GF A SF A GF A SF A AGF A ASF L TF A MF A TF A MF A ATF A AMF A
Data Simulated: CTCM, r = .35, One Vanishing Method Factor
X1 734 319 728 331 -.006 012 694 .399 .709 370 .015 -.029
X2 552 449 546 456 -.006 .007 500 .505 522 482 022 -.023
X3 461 553 454 .559 -.007 .006 397 .601 424 582 027 -.019
X4 .669 .629 661 .639 -.008 .010 595 .700 626 673 .031 -.027
Y1 657 418 642 441 -.015 .023 622 469 .618 474 -.004 .005
Y2 .845 292 .830 325 -.015 .033 .823 .353 813 .366 -.010 .013
Y3 587 610 570 .621 -.017 011 536 .659 536 .654 .000 -.005
Y4 774 503 757 530 -.017 027 735 557 .730 565 -.005 .008
Z1 504 119 517 .013 513 .092 521 .008
Z2 576 190 597 021 592 112 .603 011
Z3 .686 243 711 .025 704 .150 718 .014
Z4 773 202 794 021 792 146 .806 014
Data Simulated: CTCM, r = .5, One Vanishing Method Factor
X1 751 272 746 .285 -.005 013 .695 .398 .720 .348 .025 -.050
X2 579 412 573 421 -.006 .009 501 504 537 465 .036 -.039
X3 499 519 489 529 -.010 .010 397 .601 442 568 .045 -.033
X4 .710 583 .699 .596 -.011 013 596 .700 647 653 .051 -.047
Y1 687 .365 .669 397 -.018 .032 616 476 .634 452 .018 -.024
Y2 .865 224 .849 270 -.016 .046 .820 .361 .825 .336 .005 -.025
Y3 634 557 611 578 -.023 021 527 .668 558 .638 .031 -.030
Y4 811 441 .790 480 -.021 .039 729 .564 749 538 .020 -.026
Z1 496 151 514 .018 510 107 521 011
Z2 570 .206 594 .024 592 119 .604 012
Z3 .681 252 .708 027 701 170 721 .020
Z4 .760 246 .786 .026 792 144 .805 013

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus
one method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF:
Trait factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; A: Factor loading; A: Change between the basic model (bifactor or
CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.
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Section 3.
Reliability Estimation in EFA/ESEM and Bifactor-ESEM

Reliability is a core component of psychometric investigations (Raykov, Chapter 25, this volume).
Unfortunately, Cronbach alpha remains the most reported reliability indicator, despite its multiple
limitations (Sijtsma, 2009). Without going into all of these limitations, alpha first assumes that all
indicators are equivalent (i.e., equal factor loadings) and linked to a single dimension (i.e.,
unidimensional). Anyone familiar with factor analyses should quickly grasp the unrealism of the first
assumption. The present chapter should make it easy to understand that the second assumption is
unrealistic for measures following a bifactor, EFA/ESEM, or bifactor-ESEM structure. Among
alternatives, McDonald (1970) omega (®) coefficient seems to be the most flexible, in addition to being
easy to calculate and directly connected to the properties of the retained measurement model (Dunn et
al, 2014). ® is calculated wusing the factor loadings (Ai) and uniquenesses (&i):
o = (ZM)?2 7 ([Z[Ai]]? + Z8ii). As a result, o is directly connected to CTT definition of reliability
presented earlier (' = 62ue/6%wt = ®) if we assume that (Z|Ai])? = 6% and ([ZAi[]2 + Z8ii) = 6w at the
scale level, and that A = 6%me and &i = at 6%rmor the item level. In bifactor models, both the G- and the
S- factors are thus assumed to represent c%me. TO account for this duality, some have proposed
alternative specifications of  (e.g., Reise et al., 2013; Rodriguez et al., 2016). The first is related to the
G-factor for models including q S-factors:

oy = gD’
i)’ + Clsiil)? + sz + -+ ClAsqi))” + (61

The second is related to the S-factors:

Y = Esui)’
T @)’ + ClAah)? + (X6

Despite their intuitive appeal, these alternative coefficients are irremediably flawed in failing
to match one critical corollary of CTT definition of reliability: r« = 6%ue/c%ot also means that 1 - ry =
6Zerror (OF 1 - ® = 6%rror) (Morin et al., 2020). Because the denominator of wn and s includes components
of o%me related, respectively, to the S- and G- factors, this corollary is no longer true when ®n and s
are considered. As a result, these coefficients will necessarily underestimate the reliability of the factors
unless the converse source of 62y (i.€., due to the G-factor in the calculation of ws and to the S-factor
in the calculation of wn) is equal to zero, and will reduce linearly as this converse source of G%mue
increases. In contrast, the classical o provides a far more direct way to estimate the extent to which
scores on a G- or S- factors reflect 6%y relative to o%mor, Without being contaminated by the fact that
o2t is distributed across more than one factor. As a result, we argue that o should always be reported.
As long as o is reported, authors should be free (but not obligated) to report wn and s, as long as they
properly interpret these coefficients as reflecting the comparative strength of each type of factor at
explaining 6%, rather than as indicators of reliability.

When moving to the cross-loading component of EFA/ESEM or bifactor-ESEM, which also
arguably reflects some form of 6%me, We are unfortunately not aware of any recommendations regarding
how these cross-loadings should be taken into account in the calculation of . Clearly, although a cross-
loading indicates that an indicator shares some construct-relevant association with a secondary factor,
this association remains extraneous to the main definition of the constructs themselves (i.e., it would
not need to be incorporated into the model if the secondary construct was not also included in the
model). As such, they do not reflect properties of scores on the construct for which o is calculated, nor
do they reflect random measurement error. Rather, they are simply incorporated into the model to
control for the fallible nature of indicators. In practice, we currently recommend ignoring these cross-
loadings in the calculation of @ (Morin et al., 2020), but note that this is a matter of common sense and
an issue on which additional statistical research is needed.
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Section 4.
Power Analyses in EFA/ESEM and Bifactor-ESEM
Power Analyses

Power (Hancock & Feng, Chapter 9, this volume) is to the ability to detect as statistically
significant effects present in the population. Power is known to be impacted by a variety of elements
including sample size, effects size, the number of indicators per factor, the number of factors, the
strength of the factor loadings, the quantity and type of missing data (Enders, Chapter 12, this Volume),
and so on. Power analyses can be used to determine sample size requirements when planning a study
(a priori), or to assess the power linked to specific aspects of the analyses once the data has been
collected (post hoc). Power can be assessed in relation to model fit or model parameters, using three
main tools for which introductory presentations have been provided by Myers et al. (2011, 2016, 2018):
(a) Tables; (b) online calculators; (c) Monte-Carlo simulations (Leite, Bandalos & Shen, Chapter 6, this
volume).

Elsewhere (Morin et al., 2020) we provided a quick review of these various methods, but timidly
highlighted that power analyses might not be relevant for all types of research involving EFA/ESEM or
bifactor-ESEM. We have since come to observe that requests to conduct post hoc power analyses are
becoming more frequent from reviewers and editors alike. We thus take a stronger stand in this chapter
to highlight the unrealistic and unnecessary nature of this requirement.

First, as noted above, power analyses depend on a great variety of elements that are typically
impossible to know beforehand for a priori power analyses and very hard to account for in post hoc
power analyses. Second, statistical simulation studies have shown that EFA-based measurement tends
to be very robust to very small sample sizes (e.g., de Winter et al., 2009). Third, power is about the
ability to detect as statistically significant effects present in the population model. Thus, a lack of power
does not result in biased parameter estimates, but rather in inflated standard errors, leading to non-
statistically significant results. As such, the estimation of statistically significant relations, coupled with
the observation that standard errors are not larger than they should be, provides a sufficient proof that
power is not an issue. Fourth, in EFA/JESEM and bifactor-ESEM measurement models, the
interpretation of the results does not rely on statistical significance but on the relative size of the
loadings, cross-loadings, and factor correlations. As such, power is a non-issue for measurement
models’ comparisons relying on the sequential strategy outlined above and may (but see our next point)
only become an issue when moving to more complex predictive models.

Fifth, power (or lack thereof) is only one problem that might emerge from small sample sizes. In
practice, a far more severe type of problem tends to occur when trying to do too much with a sample
size that is too small: Nonconvergence (e.g., Chen et al., 2001). There is always a limit to the type of
model that can be estimated using any specific sample. When one goes beyond this limit, analyses
simply stop converging and no attempt to help the model achieve convergence (iterations, convergence
criteria, constraints) will solve this problem. We have frequently faced this problem with all types of
sample sizes (even with very large samples). When this happens, the solutions are to simplify the model,
adopt a more parsimonious approach, divide the larger model into sub-models, and/or revise
expectations. The key issue is that convergence problems typically arise well before power becomes an
issue. As a result, the ability to produce research that includes meaningful, and statistically significant,
results based on converging solutions is, in and of itself, an important safeguard against a lack of power.

When then, are power analyses useful? First, when planning a data collection process (or preparing
a funding application) to ensure the recruitment of a sample large enough to detect the effects of interest.
For costly data collections involving hard to access populations, a priori power analyses are a good way
to save money and maximize returns on investments, especially when one is interested in the detection
of relatively small effects. Second, when one wants to publish null findings (i.e., to demonstrate that a
relation expected by theory does not occur) using sample sizes that are not plainly and undoubtedly
“large enough,” one must demonstrate that power is not the cause of this lack of statistical significance.
Beyond this, researchers experiencing severe convergence difficulties, observing large standard errors,
and obtaining moderately large, or very large, coefficients that are flagged as non-statistically
significant should consider simplifying their models, rather than estimating power. Lastly, although a
benchmark of .80 is usually considered to reflect a desirable power level in a priori power analyses,
observing power lower than .80 in post hoc power analyses does not mean that important effects have
necessarily been missed. It only means that researchers’ chances of missing these effects are higher than
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20%. As such, unless one observes effects associated with a moderate-to-large effect size that are non-
statistically significant and associated with large standard errors, power should not be an issue. After
years of highlighting the need to stop reifying statistical significance, it would be a shame to start
reifying power analysis using unnecessarily rigid golden rules.
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