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SECTION 1.  

LIMITATIONS OF HIGHER-ORDER MODELS 

The most frequently used approach to study the structure of hierarchically-ordered constructs 

relies on higher-order models, in which indicators are used to define a series of first-order factors, 

themselves used to estimate one (or more) second-order factor(s). Although never mentioned explicitly, 

first-order factors are always specified as orthogonal (i.e., uncorrelated with one another) in a higher-

order model. Despite their intuitive appeal, higher-order models present two critical limitations.  

First, in a higher-order model, the relation between any indicator and the second-order factor is 

indirect, and reflected by the product of the indicator’s loading on the first-order factor (path a) and the 

loading of the first-order factor on the second-order factor (path b). Similarly, the relation between each 

indicator and the unique part of the first-order factor (i.e., unexplained by the second-order factor) is 

also an indirect effect, reflected by the product of the indicator’s first-order factor loadings (path a) and 

the link between the first-order factor and its disturbance (path c). Because paths b and c are constant 

for all indicators of a single first-order factor, the ratio of variance explained by the second-order factor 

relative to that explained by the first-order factor is a constant for all indicators associated with a specific 

first-order factor (a*b/a*c can be reduced to the constant b/c). Even though this implicit proportionality 

constraint may hold in some rare circumstances and help to introduce parsimony, it is unlikely to be 

supported in many practical applications (Morin et al., 2016a; Reise, 2012) or to make sense logically 

or theoretically (Gignac, 2016).  

Second, in higher-order models, the first-order factors reflect a combination of the variance 

explained by the second-order factor and of the variance uniquely explained by the first-order factor. 

To consider this second component on its own, one needs to consider the disturbance of the first-order 

factor, rather than the first-order factor itself. Because of this dual nature of the first-order factors, the 

joint inclusion of the first- and second-order factors in subsequent analyses creates a logical redundancy 

likely to result in flawed parameter estimates (Morin et al., 2016b, 2017).  

As a result, higher-order models should only be used when they are clearly supported by theory 

or research. Even then, they should be contrasted with more flexible bifactor models before making a 

final decision. 
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SECTION 2.  

BIFACTOR MODELS, ORTHOGONALITY, VANISHING S-FACTORS, AND THE 

BIFACTOR S-1 FICTION 

Over the years, various misconceptions have been vehiculated relative to bifactor models and are 

thus directly relevant to bifactor-ESEM models. These misconceptions are mainly related to the 

orthogonality assumption of bifactor models, relative to the need to estimate the factor correlations 

between the method factors in CTCM models, and to the mathematical possibility of relying on oblique 

forms of “bifactor” rotations (Jenrich & Bentler, 2011, 2012). Attempts to lump together all forms of 

models resulting in the disaggregation of true score variance into two components (global-specific vs 

trait-method) for the sake of simplicity has further contributed to muddling the relatively clear 

distinctions between these two types of models. Statistically, both types of models assume that the G-

factor (in bifactor models) or the trait factor (in CTCM models) will be uncorrelated with the S-factors 

(in bifactor models) or the method factors (in CTCM models). The difference lies in the fact that bifactor 

models also set the S-factors to be uncorrelated with one another, while CTCM models allow the method 

factors to be correlated with one another. This statistical difference entails more important theoretical 

differences.  

Substantively, bifactor models disaggregate multidimensional ratings into two distinct sets of 

theoretically meaningful constructs. The G-factor reflects the variance shared among all indicators, thus 

reflecting participants’ global scores across all dimensions of the constructs (i.e., their global 

intelligence, self-concept, or motivation). The S-factors indicate the variance shared among a subset of 

indicators forming a subscale left unexplained by the G-factor. They reflect the specificity, or unique 

nature, of each subscale net of what it shares with the other subscales. Contrary to factors estimated in 

a non-bifactor model, which reflect the subscale-relevant variance in its entirety, the S-factors reflect 

the extent to which participants’ scores on each dimension deviate from their scores across all 

dimensions (i.e., on the G-factor). These S-factors remain theoretically meaningful in their own right, 

showing the extent to which participants are uniquely characterized by each specific dimension (e.g., 

one might have a high level of IQ, and yet display a level of performance on memory tasks that is higher 

than expected given their global IQ). In contrast, CTCM models estimate meaningful trait factors from 

a series of indicators, while controlling for different sets of methodological artefacts (such as informant 

effects) which are not theoretically relevant themselves.  

Confusions between both types of models have always been present in research, as illustrated by 

studies including correlated “specifics” to study meaningful global and specific constructs (e.g., 

Brunner et al., 2009; 2010). However, this issue has recently been further muddled by the suggestion to 

rely on bifactors (S-1) models (removing one of the S-factors, but adding correlations among the 

remaining S-factors), similar to CTC(M-1) models (e.g., Burns et al., 2020; Eid et al., 2017). This 

proposition has emerged from the observation of bifactor results erroneously described as “anomalous” 

(e.g., Eid et al., 2017; Markon, 2019). Three categories of so-called “anomalous” results were identified: 

(a) “vanishing” S-factors (i.e., models in which one of the S-factor is weakly defined by its indicators); 

(b) “irregular” factor loading patterns that do not match one’s expectations or the loadings observed in 

non-bifactor correlated-factors models; (c) the observation of correlations between the specific factors.  

Clearly, issue c above can only stem from researchers’ reliance on improper bifactor models in 

which the S-factors were allowed to be correlated in the first place, which should not have happened. 

Likewise, it is hard to see how issue b can be a problem, at least statistically speaking. Although data 

frequently fails to match hypotheses, why would one expect S-factor loadings to be identical to their 

correlated-factors counterpart? When moving from a correlated-factors model to a bifactor model, one 

explicitly seeks to change the meaning of the S-factors as reflecting the unique nature of the subscale 

disaggregated from the global component. In this context, we should expect some indicators to retain 

more (showing stronger S-factor loadings) or less (showing stronger G-factor loadings and weak S-

factor loadings) specificity. Otherwise, we should not pursue a bifactor representation of the data. 

Lacking prior evidence, it is typically difficult to develop clear a priori hypotheses in this regard. 

However, moving from one type of model to the other, it seems logical to expect some differences.  

For the same reasons, the observation of vanishing S-factors (issue a) is also to be expected in 

bifactor research, and only shows that limited specificity remains at the level of the S-factor once the 

G-factor has been taken into account. A “vanishing” S-factor indicates that the items associated with 

this specific dimension mainly contribute to define the G-factor and retain very little specificity beyond 
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that. Consider the example of the satisfaction of the needs for competence, relatedness, and autonomy, 

which have been repeatedly shown to possess a bifactor structure where the global factor reflects global 

levels of need satisfaction across all needs, and the S-factors reflect deviations in the satisfaction of 

each specific need relative to that global level. This area of research typically results in the identification 

of one “vanishing” S-factor, so that this phenomenon can now be expected a priori. However, this 

“vanishing” S-factor depends on the nature of the sample. Thus, among generic populations of workers 

and university students, the need for autonomy tends to present a strong alignment with global levels of 

need satisfaction (resulting in a vanishing S-factor) (Gillet et al., 2019; 2020; Sánchez-Oliva et al., 

2017), whereas the same happens to the need for relatedness among younger populations of students 

(Garn et al., 2019) and nurses (Huyghebaert-Zouaghi et al., 2021).  

To explain these “anomalies,” Eid et al. (2017) transposed stochastic measurement theory, which 

assumes that the indicators of a reflective construct should be conceptualized as a random sample of all 

possible indicators of that construct (aligned with CTT), to suggest that the various subdomains 

(represented by the S-factors) incorporated in bifactor models should be seen as a random sample of all 

possible subdomains of that construct. To address the lack of subdomain “interchangeability,” they 

propose removing one of the S-factors, allowing the remaining S-factors to correlate, thereby 

“anchoring” the meaning of the G-factor into the omitted domain, as in the CTC(M-1) domain. 

Unfortunately, although this assumption matches CTCM models in which the various “methods” 

or “raters” are seen as a random sample of all possible “methods” or “raters,” it is flawed in relation to 

bifactor models. In a bifactor model, the whole set of indicators are assumed to be a random sample of 

all possible indicators of the G-factor. Likewise, each subset of indicators is assumed to be a random 

sample of all possible indicators of each S-factor. However, this assumption does not extend to the 

domains, dimensions, or S-factors covered in the measure. First, in a bifactor model, all factors are 

directly estimated at the indicator level (contrary to the higher-order model in which they are estimated 

at the factor level, and for which this assumption of “interchangeability” might be more relevant). 

Second, in a bifactor model, one typically assumes that all relevant subdomains are covered, at least 

from the perspective of the measure used. For instance, in the need satisfaction example used before, 

Self-Determination Theory (Ryan & Deci, 2017) assumes that these three needs form a complete set. 

Arguably, one will not necessarily be able to explicitly focus on all possible subdomains. However, 

even then, bifactor applications will usually assume that the main domains are reasonably covered to 

be able to interpret the G-factor as reflecting scores obtained across all domains. As a result, in a bifactor 

model, the G-factor does not need an anchor to be interpretable.  

Furthermore, due to the orthogonality of a bifactor model, the definition of the G-factor and of the 

remaining S-factors remains unchanged following the removal of one of the S-factor. More precisely, 

in bifactor models, the clean partitioning of the variance explained by the global and specific constructs 

is made possible by the orthogonality of the factors, as this orthogonality forces the covariance shared 

among all items to be fully absorbed into the G-factor (resulting in a clear definition of the G-factor as 

reflecting the variance shared among all of its subdomains), while the S-factors represent the covariance 

shared among a subset of items but not with the other subsets. As such, taking out one of the S-factors 

(such as a “vanishing” S-factor) will not change the meaning of the G-factor as reflecting what is shared 

among all indicators. This stability has been demonstrated by Arens and Morin (2017) and Morin et al. 

(2020).  

In contrast, CTCM models “force” construct-relevant variance to be absorbed by the trait factor 

and rely on the method factors to control for inter-rater or inter-method differences. However, by 

allowing these method factors to be correlated, the CTCM adds a third source of covariance, which 

makes it difficult to properly interpret the trait factor (and to converge). The trait factor should be used 

to estimate what is shared among all indicators, but how to achieve this when all items are already 

allowed to share something with all other items (by allowing the method factors to correlate) beyond 

the trait factor is unclear. The CTC(M-1) model provides a solution. By anchoring the definition of the 

trait factor in one of the “methods,” this model clarifies the meaning of the trait (i.e., reflecting the 

ratings obtained using the anchoring method or informant, and what they share with the other types of 

methods or informants) and method (i.e., reflecting the extent to which the ratings provided by each 

type of informant or method deviate from the ratings provided by the anchoring method or informant) 

factors. This phenomenon is related to the non-orthogonality of the method factors, which “push” into 

the trait factor the information that is shared among all indicators as well as the information that is 
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shared among the indicators of the referent method. Using real data, Morin et al. (2020) demonstrated 

this key difference, showing that the anchoring effect only occurred when correlations were included 

among the S-factors/method factors, but not in the absence of these correlations. Importantly, moving 

from an orthogonal bifactor model to a so-called “bifactor (S-1)” model in which the S-factors are 

allowed to correlate is likely to change the meaning of the G-factor in a way that no longer makes 

theoretical sense. Why would we want to “anchor” IQ scores ratings into a specific subtest (e.g., 

memory)?  

Further Demonstration 

We further illustrate these differences using three data sets simulated according to a (1) bifactor 

CFA model (relying on parameter estimates corresponding to that of Data 2 but without the cross-

loadings), a (2) CTCM model (relying on the same parameter estimates) in which the method factors 

share correlation of .35, and (3) another CTCM model relying on the same parameter estimates but 

correlations of .50 among the method factors. We also simulated three additional data sets almost 

identical to the previous ones, but in which the S-factor or method-factor to be removed was a 

“vanishing” one (with loadings varying from .100 to .200). The results (presented in Tables S1 and S2 

of these Conceptual Supplements) are pretty straightforward and show that: (a) no “anchoring” effects 

occur when the omitted S-factor or method factor is a “vanishing” factor; (b) for data simulated 

according to models including three strong S-factors or method factors, the removal of one of those 

factors results in a substantial decrease in model fit; (c) when the data is simulated according to a 

bifactor model with three strong S-factors, taking out one S-factors results in some minor changes in 

the size of the factor loadings that do not modify the meaning of the factors, whereas these changes are 

more pronounced when the remaining S-factors are allowed to be correlated; (d) for data simulated 

according to a CTCM model with three strong method factors, the removal of one method factor results 

in a clear “anchoring” effect but only when the remaining method factors are allowed to be correlated, 

not when they are orthogonal; (e) removing a “vanishing” factor does not modify the remaining factor 

loadings in any way. These results thus support the previous discussion.  
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Table S1.  

Additional Simulated Data Results: Model fit indices 

Description χ² (df) CFI TLI RMSEA 90% CI 

Data Simulated: Bifactor Model, Strong S-

Factors 
     

Bifactor 197.849 (42)* .998 .997 .019 .017; .022 

Bifactor (S-1) 2667.066 (46)* .970 .957 .075 .073; .078 

CTCM 61.933 (39) 1.000 1.000 .008 .004; .011 

CTC(M-1) 1986.665 (45)* .978 .967 .066 .063; .068 

Data Simulated: Bifactor Model, One Vanishing S-Factor     

Bifactor 58.880 (42) 1.000 1.000 .006 .001; .010 

Bifactor (S-1) 93.423 (46)* .999 .999 .010 .007; .013 

CTCM 72.118 (39)* 1.000 .999 .009 .006; .013 

CTC(M-1) 91.029 (45)* .999 .999 .010 .007; .013 

Data Simulated: CTCM, r = .35, Strong Method Factors     

Bifactor 444.755 (42)* .995 .993 .031 .028; .034 

Bifactor (S-1) 2525.084 (46)* .972 .960 .073 .071; .076 

CTCM 64.333 (39)* 1.000 1.000 .008 .004; .011 

CTC(M-1) 1806.940 (45)* .980 .971 .063 .060; .065 

Data Simulated: CTCM, r = .50, Strong Method Factors     

Bifactor 770.356 (42)* .992 .987 .042 .039; .044 

Bifactor (S-1) 2413.753 (46)* .974 .963 .072 .069; .074 

CTCM 66.414 (39)* 1.000 .999 .008 .005; .012 

CTC(M-1) 1711.283 (45)* .982 .973 .061 .058; .063 

Data Simulated: CTCM, r = .35, One Vanishing Method Factor     

Bifactor 301.042 (42)* .996 .994 .025 .022; .028 

Bifactor (S-1) 390.280 (46)* .995 .993 .027 .025; .030 

CTCM 61.173 (39) 1.000 .999 .008 .004; .011 

CTC(M-1) 77.518 (45)* 1.000 .999 .009 .005; .012 

Data Simulated: CTCM, r = .5, One Vanishing Method Factor     

Bifactor 584.291 (42)* .992 .988 .036 .033; .039 

Bifactor (S-1) 748.543 (46)* .990 .986 .039 .037; .042 

CTCM 56.747 (39) 1.000 1.000 .007 .002; .010 

CTC(M-1) 93.130 (45)* .999 .999 .010 .007; .013 

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait 

correlated methods model; CTC(M-1): CTCM model minus one method factor; S-factor: Specific 

factor from a bifactor model; χ²: Robust chi-square test of exact fit; df: Degrees of freedom; CFI: 

Comparative fit index; TLI: Tucker-Lewis index; RMSEA: Root mean square error of approximation; 

90% CI: 90% confidence interval. 
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Table S2. 

Additional Simulated Data Results: Parameter estimates (1/3) 

 Bifactor  Bifactor (S-1)   CTCM  CTC(M-1)   

Indicators GF λ SF λ GF λ SF λ ΔGF λ ΔSF λ TF λ MF λ TF λ MF λ ΔTF λ ΔMF λ 

Data Simulated: Bifactor Model, Strong S-Factors         

X1 .719 .348 .618 .468 -.101 .120 .694 .403 .603 .495 -.091 .092 

X2 .535 .469 .473 .530 -.062 .061 .494 .511 .459 .545 -.035 .034 

X3 .442 .568 .393 .596 -.049 .028 .390 .606 .379 .605 -.011 -.001 

X4 .647 .652 .573 .721 -.074 .069 .588 .706 .556 .727 -.032 .021 

Y1 .634 .453 .544 .558 -.090 .105 .598 .499 .531 .571 -.067 .072 

Y2 .820 .345 .699 .521 -.121 .176 .806 .393 .684 .541 -.122 .148 

Y3 .563 .625 .491 .658 -.072 .033 .502 .687 .478 .665 -.024 -.022 

Y4 .747 .546 .641 .677 -.106 .131 .706 .593 .625 .689 -.081 .096 

Z1 .571 .622 .791  .220  .504 .686 .797  .293  

Z2 .626 .458 .772  .146  .584 .509 .774  .190  

Z3 .749 .546 .915  .166  .699 .606 .922  .223  

Z4 .816 .340 .881  .065  .792 .403 .876  .084  

Data Simulated: Bifactor Model, One Vanishing S-Factor        

X1 .695 .401 .689 .408 -.006 .007 .696 .398 .687 .411 -.009 .013 

X2 .496 .510 .493 .513 -.003 .003 .499 .507 .491 .515 -.008 .008 

X3 .390 .606 .387 .608 -.003 .002 .396 .602 .385 .609 -.011 .007 

X4 .589 .705 .584 .709 -.005 .004 .594 .701 .582 .711 -.012 .010 

Y1 .595 .504 .587 .513 -.008 .009 .614 .480 .585 .515 -.029 .035 

Y2 .800 .403 .791 .418 -.009 .015 .814 .373 .789 .421 -.025 .048 

Y3 .496 .691 .489 .693 -.007 .002 .523 .670 .487 .695 -.036 .025 

Y4 .700 .602 .691 .613 -.009 .011 .722 .575 .689 .615 -.033 .040 

Z1 .517 .045 .520  .003  .514 .062 .520  .006  

Z2 .586 .148 .600  .014  .589 .153 .600  .011  

Z3 .692 .273 .711  .019  .700 .187 .712  .012  

Z4 .795 .110 .806  .011  .794 .132 .807  .013  

Note. Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus one 

method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF: Trait 

factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; λ: Factor loading; Δ: Change between the basic model (bifactor or 

CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.   
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Table S2. (cont.) 

Additional Simulated Data Results: Parameter estimates (2/3) 

 Bifactor  Bifactor (S-1)   CTCM  CTC(M-1)   

Indicators GF λ SF λ GF λ SF λ ΔGF λ ΔSF λ TF λ MF λ TF λ MF λ ΔTF λ ΔMF λ 

Data Simulated: CTCM, r = .35, Strong Method Factors        

X1 .736 .300 .653 .408 -.083 .108 .693 .406 .640 .442 -.053 .036 

X2 .567 .429 .517 .481 -.050 .052 .493 .512 .505 .502 .012 -.010 

X3 .486 .530 .452 .556 -.034 .026 .389 .606 .435 .566 .046 -.040 

X4 .695 .602 .635 .659 -.060 .057 .585 .709 .620 .673 .035 -.036 

Y1 .663 .409 .594 .508 -.069 .099 .596 .501 .577 .523 -.019 .022 

Y2 .832 .300 .738 .464 -.094 .164 .806 .394 .721 .487 -.085 .093 

Y3 .613 .563 .552 .593 -.061 .030 .498 .690 .542 .610 .044 -.080 

Y4 .781 .500 .700 .622 -.081 .122 .704 .594 .680 .636 -.024 .042 

Z1 .621 .561 .786  .165  .501 .690 .798  .297  

Z2 .655 .414 .768  .113  .583 .509 .773  .190  

Z3 .784 .498 .907  .123  .697 .607 .922  .225  

Z4 .829 .293 .871  .042  .792 .404 .876  .084  

Data Simulated: CTCM, r = .50, Strong Method Factors        

X1 .753 .244 .694 .340 -.059 .096 .691 .409 .678 .380 -.013 -.029 

X2 .600 .381 .568 .427 -.032 .046 .491 .513 .552 .451 .061 -.062 

X3 .532 .482 .508 .501 -.024 .019 .388 .605 .491 .517 .103 -.088 

X4 .744 .541 .706 .593 -.038 .052 .583 .712 .685 .608 .102 -.104 

Y1 .691 .357 .638 .443 -.053 .086 .594 .503 .624 .466 .030 -.037 

Y2 .841 .252 .771 .394 -.070 .142 .804 .396 .756 .423 -.048 .027 

Y3 .665 .486 .624 .523 -.041 .037 .494 .695 .607 .543 .113 -.152 

Y4 .815 .447 .754 .551 -.061 .104 .703 .594 .736 .571 .033 -.023 

Z1 .673 .486 .795  .122  .498 .695 .801  .303  

Z2 .684 .363 .769  .085  .583 .508 .773  .190  

Z3 .819 .443 .914  .095  .696 .607 .922  .226  

Z4 .840 .242 .877  .037  .791 .406 .875  .084  

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus 

one method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF: 

Trait factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; λ: Factor loading; Δ: Change between the basic model (bifactor or 

CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.   
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Table S2. (cont.) 

Additional Simulated Data Results: Parameter estimates (3/3) 

 Bifactor  Bifactor (S-1)   CTCM  CTC(M-1)   

Indicators GF λ SF λ GF λ SF λ ΔGF λ ΔSF λ TF λ MF λ TF λ MF λ ΔTF λ ΔMF λ 

Data Simulated: CTCM, r = .35, One Vanishing Method Factor        

X1 .734 .319 .728 .331 -.006 .012 .694 .399 .709 .370 .015 -.029 

X2 .552 .449 .546 .456 -.006 .007 .500 .505 .522 .482 .022 -.023 

X3 .461 .553 .454 .559 -.007 .006 .397 .601 .424 .582 .027 -.019 

X4 .669 .629 .661 .639 -.008 .010 .595 .700 .626 .673 .031 -.027 

Y1 .657 .418 .642 .441 -.015 .023 .622 .469 .618 .474 -.004 .005 

Y2 .845 .292 .830 .325 -.015 .033 .823 .353 .813 .366 -.010 .013 

Y3 .587 .610 .570 .621 -.017 .011 .536 .659 .536 .654 .000 -.005 

Y4 .774 .503 .757 .530 -.017 .027 .735 .557 .730 .565 -.005 .008 

Z1 .504 .119 .517  .013  .513 .092 .521  .008  

Z2 .576 .190 .597  .021  .592 .112 .603  .011  

Z3 .686 .243 .711  .025  .704 .150 .718  .014  

Z4 .773 .202 .794  .021  .792 .146 .806  .014  

Data Simulated: CTCM, r = .5, One Vanishing Method Factor       

X1 .751 .272 .746 .285 -.005 .013 .695 .398 .720 .348 .025 -.050 

X2 .579 .412 .573 .421 -.006 .009 .501 .504 .537 .465 .036 -.039 

X3 .499 .519 .489 .529 -.010 .010 .397 .601 .442 .568 .045 -.033 

X4 .710 .583 .699 .596 -.011 .013 .596 .700 .647 .653 .051 -.047 

Y1 .687 .365 .669 .397 -.018 .032 .616 .476 .634 .452 .018 -.024 

Y2 .865 .224 .849 .270 -.016 .046 .820 .361 .825 .336 .005 -.025 

Y3 .634 .557 .611 .578 -.023 .021 .527 .668 .558 .638 .031 -.030 

Y4 .811 .441 .790 .480 -.021 .039 .729 .564 .749 .538 .020 -.026 

Z1 .496 .151 .514  .018  .510 .107 .521  .011  

Z2 .570 .206 .594  .024  .592 .119 .604  .012  

Z3 .681 .252 .708  .027  .701 .170 .721  .020  

Z4 .760 .246 .786  .026  .792 .144 .805  .013  

Note. * p < .01; Bifactor (S-1): Bifactor model minus one specific factor; CTCM: Correlated trait correlated methods model; CTC(M-1): CTCM model minus 

one method factor; S-factor: Specific factor from a bifactor model; GF: Global factor from a bifactor model; SF: Specific factor from a bifactor model; TF: 

Trait factor from a CTCM model; MF: Method factor from a CTCM model; r: correlation; λ: Factor loading; Δ: Change between the basic model (bifactor or 

CTCM) and the reduced models (bifactor (S-1) or CTC(M-1)) in the size of the factor loadings.  
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Section 3. 

Reliability Estimation in EFA/ESEM and Bifactor-ESEM 

Reliability is a core component of psychometric investigations (Raykov, Chapter 25, this volume). 

Unfortunately, Cronbach alpha remains the most reported reliability indicator, despite its multiple 

limitations (Sijtsma, 2009). Without going into all of these limitations, alpha first assumes that all 

indicators are equivalent (i.e., equal factor loadings) and linked to a single dimension (i.e., 

unidimensional). Anyone familiar with factor analyses should quickly grasp the unrealism of the first 

assumption. The present chapter should make it easy to understand that the second assumption is 

unrealistic for measures following a bifactor, EFA/ESEM, or bifactor-ESEM structure. Among 

alternatives, McDonald (1970) omega (ω) coefficient seems to be the most flexible, in addition to being 

easy to calculate and directly connected to the properties of the retained measurement model (Dunn et 

al., 2014). ω is calculated using the factor loadings (λi) and uniquenesses (δii): 

ω = (Σ|λi|)² / ([Σ|λi|]² + Σδii). As a result, ω is directly connected to CTT definition of reliability 

presented earlier (rxx = σ2
true/σ2

total = ω) if we assume that (Σ|λi|)² = σ2
true and ([Σ|λi|]² + Σδii) = σ2

total at the 

scale level, and that λi² = σ2
true and δi = at σ2

error the item level. In bifactor models, both the G- and the 

S- factors are thus assumed to represent σ2
true. To account for this duality, some have proposed 

alternative specifications of ω (e.g., Reise et al., 2013; Rodriguez et al., 2016). The first is related to the 

G-factor for models including q S-factors:  

𝜔ℎ =  
(∑|𝜆𝑔𝑖|)

2

(∑|𝜆𝑔𝑖|)
2

+ (∑|𝜆𝑠1𝑖|)
2

+ (∑|𝜆𝑠2𝑖|)
2

+ ⋯ + (∑|𝜆𝑠𝑞𝑖|)
2

+ (∑ 𝛿𝑖𝑖)
 

The second is related to the S-factors:  

𝜔𝑠 =  
(∑|𝜆𝑠1𝑖|)

2

(∑|𝜆𝑔𝑖|)
2

+ (∑|𝜆𝑠1𝑖|)
2

+ (∑ 𝛿𝑖𝑖)
 

Despite their intuitive appeal, these alternative coefficients are irremediably flawed in failing 

to match one critical corollary of CTT definition of reliability: rxx = σ2
true/σ2

total also means that 1 - rxx = 

σ2
error (or 1 - ω = σ2

error) (Morin et al., 2020). Because the denominator of ωh and ωs includes components 

of σ2
true related, respectively, to the S- and G- factors, this corollary is no longer true when ωh and ωs 

are considered. As a result, these coefficients will necessarily underestimate the reliability of the factors 

unless the converse source of σ2
true (i.e., due to the G-factor in the calculation of ωs and to the S-factor 

in the calculation of ωh) is equal to zero, and will reduce linearly as this converse source of σ2
true 

increases. In contrast, the classical ω provides a far more direct way to estimate the extent to which 

scores on a G- or S- factors reflect σ2
true relative to σ2

error, without being contaminated by the fact that 

σ2
true is distributed across more than one factor. As a result, we argue that ω should always be reported. 

As long as ω is reported, authors should be free (but not obligated) to report ωh and ωs, as long as they 

properly interpret these coefficients as reflecting the comparative strength of each type of factor at 

explaining σ2
true, rather than as indicators of reliability.  

When moving to the cross-loading component of EFA/ESEM or bifactor-ESEM, which also 

arguably reflects some form of σ2
true, we are unfortunately not aware of any recommendations regarding 

how these cross-loadings should be taken into account in the calculation of ω. Clearly, although a cross-

loading indicates that an indicator shares some construct-relevant association with a secondary factor, 

this association remains extraneous to the main definition of the constructs themselves (i.e., it would 

not need to be incorporated into the model if the secondary construct was not also included in the 

model). As such, they do not reflect properties of scores on the construct for which ω is calculated, nor 

do they reflect random measurement error. Rather, they are simply incorporated into the model to 

control for the fallible nature of indicators. In practice, we currently recommend ignoring these cross-

loadings in the calculation of ω (Morin et al., 2020), but note that this is a matter of common sense and 

an issue on which additional statistical research is needed.  
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Section 4. 

Power Analyses in EFA/ESEM and Bifactor-ESEM 

Power Analyses 

Power (Hancock & Feng, Chapter 9, this volume) is to the ability to detect as statistically 

significant effects present in the population. Power is known to be impacted by a variety of elements 

including sample size, effects size, the number of indicators per factor, the number of factors, the 

strength of the factor loadings, the quantity and type of missing data (Enders, Chapter 12, this Volume), 

and so on. Power analyses can be used to determine sample size requirements when planning a study 

(a priori), or to assess the power linked to specific aspects of the analyses once the data has been 

collected (post hoc). Power can be assessed in relation to model fit or model parameters, using three 

main tools for which introductory presentations have been provided by Myers et al. (2011, 2016, 2018): 

(a) Tables; (b) online calculators; (c) Monte-Carlo simulations (Leite, Bandalos & Shen, Chapter 6, this 

volume).  

Elsewhere (Morin et al., 2020) we provided a quick review of these various methods, but timidly 

highlighted that power analyses might not be relevant for all types of research involving EFA/ESEM or 

bifactor-ESEM. We have since come to observe that requests to conduct post hoc power analyses are 

becoming more frequent from reviewers and editors alike. We thus take a stronger stand in this chapter 

to highlight the unrealistic and unnecessary nature of this requirement.  

First, as noted above, power analyses depend on a great variety of elements that are typically 

impossible to know beforehand for a priori power analyses and very hard to account for in post hoc 

power analyses. Second, statistical simulation studies have shown that EFA-based measurement tends 

to be very robust to very small sample sizes (e.g., de Winter et al., 2009). Third, power is about the 

ability to detect as statistically significant effects present in the population model. Thus, a lack of power 

does not result in biased parameter estimates, but rather in inflated standard errors, leading to non-

statistically significant results. As such, the estimation of statistically significant relations, coupled with 

the observation that standard errors are not larger than they should be, provides a sufficient proof that 

power is not an issue. Fourth, in EFA/ESEM and bifactor-ESEM measurement models, the 

interpretation of the results does not rely on statistical significance but on the relative size of the 

loadings, cross-loadings, and factor correlations. As such, power is a non-issue for measurement 

models’ comparisons relying on the sequential strategy outlined above and may (but see our next point) 

only become an issue when moving to more complex predictive models.  

Fifth, power (or lack thereof) is only one problem that might emerge from small sample sizes. In 

practice, a far more severe type of problem tends to occur when trying to do too much with a sample 

size that is too small: Nonconvergence (e.g., Chen et al., 2001). There is always a limit to the type of 

model that can be estimated using any specific sample. When one goes beyond this limit, analyses 

simply stop converging and no attempt to help the model achieve convergence (iterations, convergence 

criteria, constraints) will solve this problem. We have frequently faced this problem with all types of 

sample sizes (even with very large samples). When this happens, the solutions are to simplify the model, 

adopt a more parsimonious approach, divide the larger model into sub-models, and/or revise 

expectations. The key issue is that convergence problems typically arise well before power becomes an 

issue. As a result, the ability to produce research that includes meaningful, and statistically significant, 

results based on converging solutions is, in and of itself, an important safeguard against a lack of power.  

When then, are power analyses useful? First, when planning a data collection process (or preparing 

a funding application) to ensure the recruitment of a sample large enough to detect the effects of interest. 

For costly data collections involving hard to access populations, a priori power analyses are a good way 

to save money and maximize returns on investments, especially when one is interested in the detection 

of relatively small effects. Second, when one wants to publish null findings (i.e., to demonstrate that a 

relation expected by theory does not occur) using sample sizes that are not plainly and undoubtedly 

“large enough,” one must demonstrate that power is not the cause of this lack of statistical significance. 

Beyond this, researchers experiencing severe convergence difficulties, observing large standard errors, 

and obtaining moderately large, or very large, coefficients that are flagged as non-statistically 

significant should consider simplifying their models, rather than estimating power. Lastly, although a 

benchmark of .80 is usually considered to reflect a desirable power level in a priori power analyses, 

observing power lower than .80 in post hoc power analyses does not mean that important effects have 

necessarily been missed. It only means that researchers’ chances of missing these effects are higher than 
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20%. As such, unless one observes effects associated with a moderate-to-large effect size that are non-

statistically significant and associated with large standard errors, power should not be an issue. After 

years of highlighting the need to stop reifying statistical significance, it would be a shame to start 

reifying power analysis using unnecessarily rigid golden rules.  
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