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Advocates of the simplex approach to represent the continuum structure of self-determined 

motivation (Sheldon et al., 2017) have argued that one factor approaches such as that implicit in 

Chemolli and Gagné (2014) Rash analyses of motivation were incompatible with a simplex 

representation of the structure of human motivation. More precisely, this claim is anchored on 

statistical evidence provided by McDonald (1980; also see Browne, 1982, 1992) showing that a 

simplex correlation matrix could best be reflected by two alternative two-factor models. Despite its 

intuitive appeal, this rationale is flawed for a variety of reasons. First, this rationale is based on a 

correlation matrix which, despite following a simplex structure, remains based on scale scores on 

subtests uncorrected for measurement errors. Second, the factor structures proposed by McDonald are 

highly artificial. Thus, one of those structures involves two orthogonal factors characterized by similar 

loadings associated with the variables located in the middle of the simplex, and loadings on the second 

factor that are a linear function of the loadings on the first factor. The second model proposed by 

McDonald, despite allowing the factors to be correlated, involves the estimation of a second factor in 

which the loadings associated with all variables are equal to one another. Third, our own re-analysis1 

showed that this correlation matrix (reported in Table 4 in McDonald, 1980, p. 174) could also be 

fitted to a one factor model with a generally satisfactory level of fit to the data (e.g., χ2 = 39.86, df = 9, 

p ≤ .01; CFI = .954; TLI = .923; SRMR = .038), although the RMSEA (.103) suggests possible misfit. 

This misfit could be partially due to the reliance on scale scores (we come back shortly to this 

statistical issue). More importantly, even though this solution was not able to achieve a level of fit 

comparable to that of McDonald’s solutions, it resulted in interpretable factor loadings matching the 

 
1 All analyses reported in this webnote were realized with Mplus 8.0 Maximum Likelihood (ML) estimator 

(Muthén & Muthén, 2018).  



rank ordering of the variables on the simplex (λ = .618; .650; .729; .745; .714; .643). 

Importantly, by conducting the re-analysis at the subtest level, it was not possible to clearly 

disaggregate the global versus subscale-specific variance present at the item level (as done by Howard 

et al., 2018 and Litalien et al., 2017). To address these limitations, we conducted a small simulation 

study in which a population model was generated including six correlated factors, derived from three 

indicators each, with no cross-loadings allowed between any of the factors, no correlated uniqueness, 

and no global factor. The factor loadings and uniquenesses used to simulate this data were directly 

taken from the first-order CFA solution reported by Howard et al. (2018) to match parameter estimates 

typically observed in SDT research. In contrast, the factor correlations were simulated to correspond to 

the same simplex-like correlation matrix (reported in Table 4 from McDonald, 1980, p. 174), using a 

sample size of 326 matching McDonald’s specifications. From this population model, 1000 replication 

samples were generated and analyzed using a bifactor-CFA model. Interestingly, this model was found 

to fit the data quite well (across replications: χ2 = 137.322, df = 117, ns; RMSEA = .021; SRMR = 

.039)2, and resulted in G-factor loadings matching the position of the indicators on the underlying 

continuum. Similar analyses conducted based on correlations matrices described by Guttman (1954) as 

corresponding to a hypothetical equally-spaced perfect simplex (see Table 2 in Guttman, 1954, p. 271: 

χ2 = 143.114, df = 75, p ≤ .01; RMSEA = .052; SRMR = .066) or to a true correlation matrix obtained 

among six numerical ability tests (see Table 6 in Guttman, 1954, p. 284: χ2 = 167.295, df = 117, p ≤ 

.01; RMSEA = .041; SRMR = .057). The average G-factor loadings obtained across replications from 

these three solutions are reported in Table 1. The simulation input and output files used in this 

demonstration are available at the end of this webnote.  

Importantly, despite the fact that these factor loadings match the expected position of the 

indicators on the underlying simplex, differences are not as marked as those reported by Howard et al. 

(2018) and Litalien et al. (2017). Given the fact that these factor correlations match a known simplex 

matrix, this observation suggests that something more than a simplex structure characterizes 

motivation ratings and that this something requires bifactor modeling, or perhaps person-centered 

 
2 CFI and TLI estimates are not provided by Mplus 8.0 Monte Carlo simulation facilities.  



analyses, to be correctly identified.  
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Table 1 

Loadings Obtained on the Global Factor across Replications 

Items McDonald (1980): 

Table 4 

Guttman (1954):  

Table 2 

Guttman (1954):  

Table 6 

Factor 1 Item 1 .525 .482 .568 

Factor 1 Item 2 .554 .506 .599 

Factor 1 Item 3 .563 .518 .610 

Factor 2 Item 1 .417 .499 .465 

Factor 2 Item 2 .536 .643 .599 

Factor 2 Item 3 .525 .628 .585 

Factor 3 Item 1 .422 .442 .487 

Factor 3 Item 2 .504 .527 .582 

Factor 3 Item 3 .434 .452 .498 

Factor 4 Item 1 .390 .312 .417 

Factor 4 Item 2 .534 .420 .576 

Factor 4 Item 3 .457 .361 .494 

Factor 5 Item 1 .467 .271 .413 

Factor 5 Item 2 .456 .264 .404 

Factor 5 Item 3 .470 .272 .416 

Factor 6 Item 1 .460 .482 .447 

Factor 6 Item 2 .410 .506 .399 

Factor 6 Item 3 .446 .518 .436 

 

  



Syntax based on McDonald (1980), Table 4. 

Title: Data generation input;  

montecarlo: 

 names =  a1-a3 b1-b3 c1-c3 d1-d3 e1-e3 g1-g3; 

 ngroups = 1; 

 nobs = 326; 

 nreps = 1000; 

model population: 

! Main loadings 

F1 BY a1*.84; 

F1 BY a2*.88; 

F1 BY a3*.90; 

F2 BY b1*.63; 

F2 BY b2*.81; 

F2 BY b3*.79; 

F3 BY c1*.58; 

F3 BY c2*.69; 

F3 BY c3*.59; 

F4 BY d1*.53; 

F4 BY d2*.72; 

F4 BY d3*.62; 

F5 BY e1*.67; 

F5 BY e2*.65; 

F5 BY e3*.67; 

F6 BY g1*.73; 

F6 BY g2*.65; 

F6 BY g3*.71; 

 

! Intercepts 

[a1-g3@0]; 

 

!Uniquenesses 

a1*.29; 

a2*.23; 

a3*.19; 

b1*.60; 

b2*.34; 

b3*.38; 

c1*.67; 

c2*.53; 

c3*.66; 

d1*.72; 

d2*.49; 

d3*.62; 

e1*.55; 

e2*.58; 

e3*.55; 

g1*.47; 

g2*.58; 

g3*.50; 

 

!Latent means  

[f1@0]; 

[f2@0]; 

[f3@0]; 

[f4@0]; 

[f5@0]; 

[f6@0]; 



!Latent variances and covariances 

f1@1; 

f2@1;  

f3@1; 

f4@1;  

f5@1;  

f6@1;  

f1 WITH f2*.51; 

f1 WITH f3*.46; 

f1 WITH f4*.46; 

f1 WITH f5*.40; 

f1 WITH f6*.33; 

f2 WITH f3*.51; 

f2 WITH f4*.47; 

f2 WITH f5*.39; 

f2 WITH f6*.39; 

f3 WITH f4*.54; 

f3 WITH f5*.49; 

f3 WITH f6*.47; 

f4 WITH f5*.57; 

f4 WITH f6*.45; 

f5 WITH f6*.56; 

 

MODEL :  

F1 BY a1* a2-a3; 

F2 BY b1* b2-b3; 

F3 BY c1* c2-c3; 

F4 BY d1* d2-d3; 

F5 BY e1* e2-e3; 

F6 BY g1* g2-g3; 

GF BY a1* a2-g3; 

F1-F6@1; 

GF@1; 

GF WITH F1-F6@0; 

F1 WITH F2-F6@0; 

F2 WITH F3-F6@0; 

F3 WITH F4-F6@0; 

F4 WITH F5-F6@0; 

F5 WITH F6@0; 

  



Syntax based on Guttman (1954), Table 2. 

Title: Data generation input;  

montecarlo: 

 names =  a1-a3 b1-b3 c1-c3 d1-d3 e1-e3 ; 

 ngroups = 1; 

 nobs = 326; 

 nreps = 1000; 

model population: 

! Main loadings 

F1 BY a1*.84; 

F1 BY a2*.88; 

F1 BY a3*.90; 

F2 BY b1*.63; 

F2 BY b2*.81; 

F2 BY b3*.79; 

F3 BY c1*.58; 

F3 BY c2*.69; 

F3 BY c3*.59; 

F4 BY d1*.53; 

F4 BY d2*.72; 

F4 BY d3*.62; 

F5 BY e1*.67; 

F5 BY e2*.65; 

F5 BY e3*.67; 

 

! Intercepts 

[a1-e3@0]; 

 

!Uniquenesses 

a1*.29; 

a2*.23; 

a3*.19; 

b1*.60; 

b2*.34; 

b3*.38; 

c1*.67; 

c2*.53; 

c3*.66; 

d1*.72; 

d2*.49; 

d3*.62; 

e1*.55; 

e2*.58; 

e3*.55; 

 

!Latent means  

[f1@0]; 

[f2@0]; 

[f3@0]; 

[f4@0]; 

[f5@0]; 

 

!Latent variances and covariances 

f1@1; 

f2@1;  

f3@1; 

f4@1;  

f5@1;  



f1 WITH f2*.60; 

f1 WITH f3*.36; 

f1 WITH f4*.216; 

f1 WITH f5*.1296; 

f2 WITH f3*.6; 

f2 WITH f4*.36; 

f2 WITH f5*.216; 

f3 WITH f4*.6; 

f3 WITH f5*.36; 

f4 WITH f5*.60; 

 

MODEL :  

F1 BY a1* a2-a3; 

F2 BY b1* b2-b3; 

F3 BY c1* c2-c3; 

F4 BY d1* d2-d3; 

F5 BY e1* e2-e3; 

GF BY a1* a2-e3; 

F1-F5@1; 

GF@1; 

GF WITH F1-F5@0; 

F1 WITH F2-F5@0; 

F2 WITH F3-F5@0; 

F3 WITH F4-F5@0; 

F4 WITH F5@0; 

 

  



Syntax based on Guttman (1954), Table 6. 

Title: Data generation input;  

montecarlo: 

 names =  a1-a3 b1-b3 c1-c3 d1-d3 e1-e3 g1-g3; 

 ngroups = 1; 

 nobs = 240; 

 nreps = 1000; 

model population: 

! Main loadings 

F1 BY a1*.84; 

F1 BY a2*.88; 

F1 BY a3*.90; 

F2 BY b1*.63; 

F2 BY b2*.81; 

F2 BY b3*.79; 

F3 BY c1*.58; 

F3 BY c2*.69; 

F3 BY c3*.59; 

F4 BY d1*.53; 

F4 BY d2*.72; 

F4 BY d3*.62; 

F5 BY e1*.67; 

F5 BY e2*.65; 

F5 BY e3*.67; 

F6 BY g1*.73; 

F6 BY g2*.65; 

F6 BY g3*.71; 

 

! Intercepts 

[a1-g3@0]; 

 

!Uniquenesses 

a1*.29; 

a2*.23; 

a3*.19; 

b1*.60; 

b2*.34; 

b3*.38; 

c1*.67; 

c2*.53; 

c3*.66; 

d1*.72; 

d2*.49; 

d3*.62; 

e1*.55; 

e2*.58; 

e3*.55; 

g1*.47; 

g2*.58; 

g3*.50; 

 

!Latent means  

[f1@0]; 

[f2@0]; 

[f3@0]; 

[f4@0]; 

[f5@0]; 

[f6@0]; 



!Latent variances and covariances 

f1@1; 

f2@1;  

f3@1; 

f4@1;  

f5@1;  

f6@1;  

f1 WITH f2*.62; 

f1 WITH f3*.62; 

f1 WITH f4*.54; 

f1 WITH f5*.29; 

f1 WITH f6*.28; 

f2 WITH f3*.67; 

f2 WITH f4*.53; 

f2 WITH f5*.38; 

f2 WITH f6*.37; 

f3 WITH f4*.62; 

f3 WITH f5*.48; 

f3 WITH f6*.52; 

f4 WITH f5*.62; 

f4 WITH f6*.57; 

f5 WITH f6*.64; 

 

MODEL :  

F1 BY a1* a2-a3; 

F2 BY b1* b2-b3; 

F3 BY c1* c2-c3; 

F4 BY d1* d2-d3; 

F5 BY e1* e2-e3; 

F6 BY g1* g2-g3; 

GF BY a1* a2-g3; 

F1-F6@1; 

GF@1; 

GF WITH F1-F6@0; 

F1 WITH F2-F6@0; 

F2 WITH F3-F6@0; 

F3 WITH F4-F6@0; 

F4 WITH F5-F6@0; 

F5 WITH F6@0; 


